jbilcke-hf's picture
jbilcke-hf HF staff
add a login wall
b48537f
raw
history blame
3.86 kB
export type ProjectionMode = 'cartesian' | 'spherical'
export type CacheMode = "use" | "renew" | "ignore"
export interface RenderRequest {
prompt: string
// whether to use video segmentation
// disabled (default)
// firstframe: we only analyze the first frame
// allframes: we analyze all the frames
segmentation: 'disabled' | 'firstframe' | 'allframes'
// segmentation will only be executed if we have a non-empty list of actionnables
// actionnables are names of things like "chest", "key", "tree", "chair" etc
actionnables: string[]
// note: this is the number of frames for Zeroscope,
// which is currently configured to only output 3 seconds, so:
// nbFrames=8 -> 1 sec
// nbFrames=16 -> 2 sec
// nbFrames=24 -> 3 sec
nbFrames: number // min: 1, max: 24
nbSteps: number // min: 1, max: 50
seed: number
width: number // fixed at 1024 for now
height: number // fixed at 512 for now
// upscaling factor
// 0: no upscaling
// 1: no upscaling
// 2: 2x larger
// 3: 3x larger
// 4x: 4x larger, up to 4096x4096 (warning: a PNG of this size can be 50 Mb!)
upscalingFactor: number
projection: ProjectionMode
/**
* Use turbo mode
*
* At the time of writing this will use SSD-1B + LCM
* https://huggingface.co/spaces/jbilcke-hf/fast-image-server
*/
turbo: boolean
cache: CacheMode
wait: boolean // wait until the job is completed
analyze: boolean // analyze the image to generate a caption (optional)
}
export interface ImageSegment {
id: number
box: number[]
color: number[]
label: string
score: number
}
export type RenderedSceneStatus =
| "pending"
| "completed"
| "error"
export interface RenderedScene {
renderId: string
status: RenderedSceneStatus
assetUrl: string
alt: string
error: string
maskUrl: string
segments: ImageSegment[]
}
export interface ImageAnalysisRequest {
image: string // in base64
prompt: string
}
export interface ImageAnalysisResponse {
result: string
error?: string
}
export type GeneratedPanel = {
panel: number
instructions: string
caption: string
}
export type GeneratedPanels = GeneratedPanel[]
export type LLMEngine =
| "INFERENCE_API"
| "INFERENCE_ENDPOINT"
| "OPENAI"
| "REPLICATE"
| "GROQ"
export type RenderingEngine =
| "VIDEOCHAIN"
| "OPENAI"
| "REPLICATE"
| "INFERENCE_API"
| "INFERENCE_ENDPOINT"
export type RenderingModelVendor =
| "SERVER"
| "OPENAI"
| "REPLICATE"
| "HUGGINGFACE"
export type PostVisibility =
| "featured" // featured by admins
| "trending" // top trending / received more than 10 upvotes
| "normal" // default visibility
export type Post = {
postId: string
appId: string
prompt: string
previewUrl: string
assetUrl: string
createdAt: string
visibility: PostVisibility
upvotes: number
downvotes: number
}
export type CreatePostResponse = {
success?: boolean
error?: string
post: Post
}
export type GetAppPostsResponse = {
success?: boolean
error?: string
posts: Post[]
}
export type GetAppPostResponse = {
success?: boolean
error?: string
post: Post
}
export type LayoutProps = {
page: number
nbPanels: number
}
// TODO: rename the *Model fields to better indicate if this is a LLM or RENDER mdoel
export type Settings = {
renderingModelVendor: RenderingModelVendor
renderingUseTurbo: boolean
huggingFaceOAuth: string
huggingfaceApiKey: string
huggingfaceInferenceApiModel: string
huggingfaceInferenceApiModelTrigger: string
huggingfaceInferenceApiFileType: string
replicateApiKey: string
replicateApiModel: string
replicateApiModelVersion: string
replicateApiModelTrigger: string
openaiApiKey: string
openaiApiModel: string
openaiApiLanguageModel: string
groqApiKey: string
groqApiLanguageModel: string
hasGeneratedAtLeastOnce: boolean
}