jbilcke-hf's picture
jbilcke-hf HF staff
add new turbo mode
4f8f050
raw
history blame
3.11 kB
import { createLlamaPrompt } from "@/lib/createLlamaPrompt"
import { dirtyLLMResponseCleaner } from "@/lib/dirtyLLMResponseCleaner"
import { dirtyLLMJsonParser } from "@/lib/dirtyLLMJsonParser"
import { dirtyCaptionCleaner } from "@/lib/dirtyCaptionCleaner"
import { predict } from "./predict"
import { Preset } from "../engine/presets"
import { LLMResponse } from "@/types"
import { cleanJson } from "@/lib/cleanJson"
export const getStory = async ({
preset,
prompt = "",
nbTotalPanels = 4,
}: {
preset: Preset;
prompt: string;
nbTotalPanels: number;
}): Promise<LLMResponse> => {
// throw new Error("Planned maintenance")
// In case you need to quickly debug the RENDERING engine you can uncomment this:
// return mockLLMResponse
const query = createLlamaPrompt([
{
role: "system",
content: [
`You are a writer specialized in ${preset.llmPrompt}`,
`Please write detailed drawing instructions and a short (1 or 2 sentences long) speech caption for the ${nbTotalPanels} panels of a new story. Please make sure each of the ${nbTotalPanels} panels include info about character gender, age, origin, clothes, colors, location, lights, etc.`,
`Give your response as a VALID JSON array like this: \`Array<{ panel: number; instructions: string; caption: string}>\`.`,
// `Give your response as Markdown bullet points.`,
`Be brief in your ${nbTotalPanels} instructions and narrative captions, don't add your own comments. Be straight to the point, and never reply things like "Sure, I can.." etc. Reply using valid JSON.`
].filter(item => item).join("\n")
},
{
role: "user",
content: `The story is: ${prompt}`,
}
]) + "```json\n["
let result = ""
try {
// console.log(`calling predict(${query}, ${nbTotalPanels})`)
result = `${await predict(query, nbTotalPanels) || ""}`.trim()
if (!result.length) {
throw new Error("empty result!")
}
} catch (err) {
// console.log(`prediction of the story failed, trying again..`)
try {
result = `${await predict(query+".", nbTotalPanels) || ""}`.trim()
if (!result.length) {
throw new Error("empty result!")
}
} catch (err) {
console.error(`prediction of the story failed again πŸ’©`)
throw new Error(`failed to generate the story ${err}`)
}
}
// console.log("Raw response from LLM:", result)
const tmp = cleanJson(result)
let llmResponse: LLMResponse = []
try {
llmResponse = dirtyLLMJsonParser(tmp)
} catch (err) {
// console.log(`failed to read LLM response: ${err}`)
// console.log(`original response was:`, result)
// in case of failure here, it might be because the LLM hallucinated a completely different response,
// such as markdown. There is no real solution.. but we can try a fallback:
llmResponse = (
tmp.split("*")
.map(item => item.trim())
.map((cap, i) => ({
panel: i,
caption: cap,
instructions: cap,
}))
)
}
return llmResponse.map(res => dirtyCaptionCleaner(res))
}