Yuanshi's picture
1024 support
fb17308
raw
history blame
10.1 kB
import torch
import yaml, os
from diffusers.pipelines import FluxPipeline
from typing import List, Union, Optional, Dict, Any, Callable
from .transformer import tranformer_forward
from .condition import Condition
from diffusers.pipelines.flux.pipeline_flux import (
FluxPipelineOutput,
calculate_shift,
retrieve_timesteps,
np,
)
def prepare_params(
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = 512,
width: Optional[int] = 512,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
**kwargs: dict,
):
return (
prompt,
prompt_2,
height,
width,
num_inference_steps,
timesteps,
guidance_scale,
num_images_per_prompt,
generator,
latents,
prompt_embeds,
pooled_prompt_embeds,
output_type,
return_dict,
joint_attention_kwargs,
callback_on_step_end,
callback_on_step_end_tensor_inputs,
max_sequence_length,
)
def seed_everything(seed: int = 42):
torch.backends.cudnn.deterministic = True
torch.manual_seed(seed)
np.random.seed(seed)
@torch.no_grad()
def generate(
pipeline: FluxPipeline,
conditions: List[Condition] = None,
model_config: Optional[Dict[str, Any]] = {},
condition_scale: float = 1.0,
**params: dict,
):
# model_config = model_config or get_config(config_path).get("model", {})
if condition_scale != 1:
for name, module in pipeline.transformer.named_modules():
if not name.endswith(".attn"):
continue
module.c_factor = torch.ones(1, 1) * condition_scale
self = pipeline
(
prompt,
prompt_2,
height,
width,
num_inference_steps,
timesteps,
guidance_scale,
num_images_per_prompt,
generator,
latents,
prompt_embeds,
pooled_prompt_embeds,
output_type,
return_dict,
joint_attention_kwargs,
callback_on_step_end,
callback_on_step_end_tensor_inputs,
max_sequence_length,
) = prepare_params(**params)
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
lora_scale = (
self.joint_attention_kwargs.get("scale", None)
if self.joint_attention_kwargs is not None
else None
)
(
prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
# 4. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 4.1. Prepare conditions
condition_latents, condition_ids, condition_type_ids = ([] for _ in range(3))
use_condition = conditions is not None or []
if use_condition:
assert len(conditions) <= 1, "Only one condition is supported for now."
pipeline.set_adapters(
{
512: "subject_512",
1024: "subject_1024",
}[height]
)
for condition in conditions:
tokens, ids, type_id = condition.encode(self)
condition_latents.append(tokens) # [batch_size, token_n, token_dim]
condition_ids.append(ids) # [token_n, id_dim(3)]
condition_type_ids.append(type_id) # [token_n, 1]
condition_latents = torch.cat(condition_latents, dim=1)
condition_ids = torch.cat(condition_ids, dim=0)
if condition.condition_type == "subject":
delta = 32 if height == 512 else -32
# print(f"Condition delta: {delta}")
condition_ids[:, 2] += delta
condition_type_ids = torch.cat(condition_type_ids, dim=0)
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
num_warmup_steps = max(
len(timesteps) - num_inference_steps * self.scheduler.order, 0
)
self._num_timesteps = len(timesteps)
# 6. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype)
# handle guidance
if self.transformer.config.guidance_embeds:
guidance = torch.tensor([guidance_scale], device=device)
guidance = guidance.expand(latents.shape[0])
else:
guidance = None
noise_pred = tranformer_forward(
self.transformer,
model_config=model_config,
# Inputs of the condition (new feature)
condition_latents=condition_latents if use_condition else None,
condition_ids=condition_ids if use_condition else None,
condition_type_ids=condition_type_ids if use_condition else None,
# Inputs to the original transformer
hidden_states=latents,
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (
latents / self.vae.config.scaling_factor
) + self.vae.config.shift_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if condition_scale != 1:
for name, module in pipeline.transformer.named_modules():
if not name.endswith(".attn"):
continue
del module.c_factor
if not return_dict:
return (image,)
return FluxPipelineOutput(images=image)