import gradio as gr import re import os import torch #Speech to text import whisper #QA from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline #TTS import tempfile from TTS.utils.manage import ModelManager from TTS.utils.synthesizer import Synthesizer from typing import Optional device = "cuda" if torch.cuda.is_available() else "cpu" # Whisper: Speech-to-text model = whisper.load_model("base", device = device) model_med = whisper.load_model("small", device = device) #Roberta Q&A model_name = "deepset/tinyroberta-squad2" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name, device = 0) #TTS tts_manager = ModelManager() MAX_TXT_LEN = 100 print(model.device) # Whisper - speech-to-text def whisper_stt(audio): print("Inside Whisper TTS") # load audio and pad/trim it to fit 30 seconds audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) # make log-Mel spectrogram and move to the same device as the model mel = whisper.log_mel_spectrogram(audio).to(model.device) # detect the spoken language _, probs = model.detect_language(mel) lang = max(probs, key=probs.get) print(f"Detected language: {max(probs, key=probs.get)}") # decode the audio options_transc = whisper.DecodingOptions(fp16 = False, language=lang, task='transcribe') #lang options_transl = whisper.DecodingOptions(fp16 = False, language='en', task='translate') #lang result_transc = whisper.decode(model_med, mel, options_transc) result_transl = whisper.decode(model_med, mel, options_transl) # print the recognized text print(f"transcript is : {result_transc.text}") print(f"translation is : {result_transl.text}") return result_transc.text, result_transl.text, lang # Coqui - Text-to-Speech def tts(text: str, model_name: str): if len(text) > MAX_TXT_LEN: text = text[:MAX_TXT_LEN] print(f"Input text was cutoff since it went over the {MAX_TXT_LEN} character limit.") print(text, model_name) # download model model_path, config_path, model_item = tts_manager.download_model(f"tts_models/{model_name}") vocoder_name: Optional[str] = model_item["default_vocoder"] # download vocoder vocoder_path = None vocoder_config_path = None if vocoder_name is not None: vocoder_path, vocoder_config_path, _ = tts_manager.download_model(vocoder_name) # init synthesizer synthesizer = Synthesizer( model_path, config_path, None, None, vocoder_path, vocoder_config_path, ) # synthesize if synthesizer is None: raise NameError("model not found") wavs = synthesizer.tts(text) # return output with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: synthesizer.save_wav(wavs, fp) return fp.name def engine(audio, context): # Get voice query to text transcribe, translation, lang = whisper_stt(audio) # Get Query answer answer = get_query_result(translation, context) answer_speech = tts(answer, model_name= 'en/ljspeech/tacotron2-DDC_ph') return translation, answer, answer_speech def get_query_result(query, context): QA_input = { 'question': query, 'context': context } answer = nlp(QA_input)['answer'] return answer demo = gr.Blocks() with demo: gr.Markdown("