import os os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' import streamlit as st from keras.models import load_model from keras.preprocessing.image import load_img, img_to_array from keras.applications.vgg19 import preprocess_input import numpy as np from transformers import pipeline # Load the Keras model model = load_model("/home/user/app/Tumour_Model(V19).h5") # Define the class reference dictionary ref = {0: 'Glioma', 1: 'Meningioma', 2: 'No Tumor', 3: 'Pituitary'} # Define function to preprocess the image def preprocess_image(image_path): img = load_img(image_path, target_size=(256, 256)) img_array = img_to_array(img) img_array = preprocess_input(img_array) img_array = np.expand_dims(img_array, axis=0) return img_array # Streamlit app def main(): st.title('Brain Tumor Classification') # Upload image uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Preprocess the image image = preprocess_image(uploaded_file) # Make prediction predictions = model.predict(image) predicted_class = np.argmax(predictions) predicted_class_name = ref[predicted_class] probabilities = predictions.tolist()[0] # Display prediction st.success(f"Predicted class: {predicted_class_name}") st.write("Probabilities:") for i, prob in enumerate(probabilities): st.write(f"{ref[i]}: {prob}") # Hugging Face component """st.title("Hugging Face Model") model_name = "mrm8488/distill-bert-base-spanish-wwm-cased-finetuned-spa-squad2-es" st.huggingface_component(model_name)""" if __name__ == '__main__': main()