jayasuriyaK commited on
Commit
c93969c
·
verified ·
1 Parent(s): 1bec327

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -0
app.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
3
+ import streamlit as st
4
+ from keras.models import load_model
5
+ from keras.preprocessing.image import load_img, img_to_array
6
+ from keras.applications.vgg19 import preprocess_input
7
+ import numpy as np
8
+ from transformers import pipeline
9
+
10
+ # Load the Keras model
11
+ model = load_model("Tumour_model(V19).h5")
12
+
13
+ # Define the class reference dictionary
14
+ ref = {0: 'Glioma', 1: 'Meningioma', 2: 'No Tumor', 3: 'Pituitary'}
15
+
16
+ # Define function to preprocess the image
17
+ def preprocess_image(image_path):
18
+ img = load_img(image_path, target_size=(256, 256))
19
+ img_array = img_to_array(img)
20
+ img_array = preprocess_input(img_array)
21
+ img_array = np.expand_dims(img_array, axis=0)
22
+ return img_array
23
+
24
+ # Streamlit app
25
+ def main():
26
+ st.title('Brain Tumor Classification')
27
+
28
+ # Upload image
29
+ uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
30
+
31
+ if uploaded_file is not None:
32
+ # Preprocess the image
33
+ image = preprocess_image(uploaded_file)
34
+
35
+ # Make prediction
36
+ predictions = model.predict(image)
37
+ predicted_class = np.argmax(predictions)
38
+ predicted_class_name = ref[predicted_class]
39
+ probabilities = predictions.tolist()[0]
40
+
41
+ # Display prediction
42
+ st.success(f"Predicted class: {predicted_class_name}")
43
+ st.write("Probabilities:")
44
+ for i, prob in enumerate(probabilities):
45
+ st.write(f"{ref[i]}: {prob}")
46
+
47
+ # Hugging Face component
48
+ st.title("Hugging Face Model")
49
+ model_name = "mrm8488/distill-bert-base-spanish-wwm-cased-finetuned-spa-squad2-es"
50
+ st.huggingface_component(model_name)
51
+
52
+ if __name__ == '__main__':
53
+ main()