text-completion / app.py
qgallouedec's picture
qgallouedec HF staff
Update app.py
729f92f verified
raw
history blame
1.8 kB
import gradio as gr
from gradio.components import Dropdown, Textbox
from huggingface_hub import HfApi, ModelFilter
from transformers import pipeline
# Get the list of models from the Hugging Face Hub
api = HfApi()
models = api.list_models(author="jat-project", filter=ModelFilter(tags="text-generation"))
models_names = [model.modelId for model in models]
# Dictionary to store loaded models and their pipelines
model_pipelines = {}
# Load a default model initially
default_model_name = "jat-project/jat-small"
def generate_text(model_name, input_text):
# Check if the selected model is already loaded
if model_name not in model_pipelines:
# Inform the user that the model is loading
yield "Loading model..."
# Load the model and create a pipeline if it's not already loaded
generator = pipeline("text-generation", model=model_name, trust_remote_code=True)
model_pipelines[model_name] = generator
# Get the pipeline for the selected model
generator = model_pipelines[model_name]
# Inform the user that the text is being generated
yield "Generating text..."
# Generate text
generated_text = generator(input_text, max_length=100)[0]["generated_text"]
# Return the generated text
yield generated_text
# Define the Gradio interface
iface = gr.Interface(
fn=generate_text, # Function to be called on user input
inputs=[
Dropdown(models_names, label="Select Model", value=default_model_name), # Select model
Textbox(lines=5, label="Input Text"), # Textbox for entering text
],
outputs=Textbox(label="Generated Text"), # Textbox to display the generated text
title="JAT Text Generation", # Title of the interface
)
# Launch the Gradio interface
iface.launch(enable_queue=True)