Update ingest.py
Browse files
ingest.py
CHANGED
@@ -1,73 +1,39 @@
|
|
1 |
-
import os
|
2 |
-
import
|
3 |
-
|
4 |
-
from langchain_community.
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
if not texts:
|
41 |
-
st.error("No text chunks were created. Check the text splitting process.")
|
42 |
-
return
|
43 |
-
|
44 |
-
st.info(f"Created {len(texts)} text chunks.")
|
45 |
-
|
46 |
-
try:
|
47 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
48 |
-
except Exception as e:
|
49 |
-
st.error(f"Failed to initialize embeddings: {e}")
|
50 |
-
return
|
51 |
-
|
52 |
-
try:
|
53 |
-
db = FAISS.from_documents(texts, embeddings)
|
54 |
-
st.info(f"Created FAISS index with {len(texts)} vectors")
|
55 |
-
except Exception as e:
|
56 |
-
st.error(f"Failed to create FAISS index: {e}")
|
57 |
-
return
|
58 |
-
|
59 |
-
index_dir = "faiss_index"
|
60 |
-
if not os.path.exists(index_dir):
|
61 |
-
os.makedirs(index_dir)
|
62 |
-
|
63 |
-
try:
|
64 |
-
db.save_local(index_dir)
|
65 |
-
st.success(f"FAISS index successfully saved to {index_dir}")
|
66 |
-
index_path = os.path.join(index_dir, "index.faiss")
|
67 |
-
st.info(f"Index file size: {os.path.getsize(index_path)} bytes")
|
68 |
-
st.info(f"Index file permissions: {oct(os.stat(index_path).st_mode)[-3:]}")
|
69 |
-
except Exception as e:
|
70 |
-
st.error(f"Failed to save FAISS index: {e}")
|
71 |
-
|
72 |
-
if __name__ == "__main__":
|
73 |
-
create_faiss_index()
|
|
|
1 |
+
import os
|
2 |
+
from langchain.document_loaders import PyPDFLoader
|
3 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain_community.vectorstores import FAISS
|
5 |
+
|
6 |
+
def create_faiss_index():
|
7 |
+
try:
|
8 |
+
# Ensure the 'docs' directory exists and contains files
|
9 |
+
docs_directory = 'docs'
|
10 |
+
if not os.path.exists(docs_directory) or not os.listdir(docs_directory):
|
11 |
+
raise ValueError(f"Directory '{docs_directory}' is empty or does not exist.")
|
12 |
+
|
13 |
+
# Load all documents from the 'docs' directory
|
14 |
+
documents = []
|
15 |
+
for file in os.listdir(docs_directory):
|
16 |
+
if file.endswith('.pdf'):
|
17 |
+
loader = PyPDFLoader(os.path.join(docs_directory, file))
|
18 |
+
documents.extend(loader.load())
|
19 |
+
|
20 |
+
if not documents:
|
21 |
+
raise ValueError("No valid documents found in the 'docs' directory.")
|
22 |
+
|
23 |
+
# Create embeddings using HuggingFace's 'sentence-transformers/all-MiniLM-L6-v2' model
|
24 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
25 |
+
|
26 |
+
# Create the FAISS vector store index
|
27 |
+
faiss_index = FAISS.from_documents(documents, embeddings)
|
28 |
+
|
29 |
+
# Save the FAISS index locally
|
30 |
+
index_path = "faiss_index"
|
31 |
+
os.makedirs(index_path, exist_ok=True)
|
32 |
+
faiss_index.save_local(index_path)
|
33 |
+
|
34 |
+
print("FAISS index created and saved successfully.")
|
35 |
+
except Exception as e:
|
36 |
+
print(f"An error occurred during FAISS index creation: {e}")
|
37 |
+
|
38 |
+
if __name__ == "__main__":
|
39 |
+
create_faiss_index()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|