jaimin's picture
Upload 47 files
14ad1cc verified
raw
history blame
1.93 kB
import streamlit as st
from crew_initializer import initialize_crew
from utils.pdf_generator import generate_pdf
import json
import logging
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Custom JSON Encoder
class CustomJSONEncoder(json.JSONEncoder):
def default(self, obj):
try:
# Convert objects with __dict__ attributes to dictionaries
if hasattr(obj, "__dict__"):
return obj.__dict__
return super().default(obj)
except TypeError:
return str(obj) # Fallback for unsupported types
def main():
"""
Main entry point for the Streamlit application.
Handles user input, executes tasks, and displays results.
"""
st.title("Company Researcher Tool")
st.sidebar.header("Provide Company Details")
company_name = st.sidebar.text_input("Enter the Company Name:", "")
if st.sidebar.button("Run Analysis"):
st.write(f"### Running analysis for: {company_name}")
with st.spinner("Executing tasks, please wait..."):
try:
crew = initialize_crew()
result = crew.kickoff(inputs={"company": company_name})
result_serialized = json.loads(json.dumps(result,cls=CustomJSONEncoder))
st.success("Analysis Complete!")
st.json(result_serialized)
pdf_buffer = generate_pdf(result_serialized)
st.download_button(
label="πŸ“„ Download Report (PDF)",
data=pdf_buffer,
file_name=f"{company_name}_report.pdf",
mime="application/pdf"
)
except Exception as e:
logging.error(f"Error during analysis: {str(e)}")
st.error(f"An error occurred: {str(e)}")
if __name__ == "__main__":
main()