v1
Browse files- app.py +49 -8
- checkpoints/{st-step=100000+la-step=100000-v2.ckpt → st-step=100000+la-step=100000-v1.ckpt} +2 -2
- configs/demo.yaml +2 -2
- configs/test/textdesign_sd_2.yaml +28 -17
- sgm/modules/__init__.py +1 -1
- sgm/modules/attention.py +621 -61
- sgm/modules/diffusionmodules/__init__.py +1 -1
- sgm/modules/diffusionmodules/guiders.py +33 -4
- sgm/modules/diffusionmodules/loss.py +1 -58
- sgm/modules/diffusionmodules/openaimodel.py +1641 -195
- sgm/modules/diffusionmodules/sampling.py +222 -5
- sgm/modules/diffusionmodules/sampling_utils.py +4 -1
- sgm/modules/diffusionmodules/wrappers.py +2 -2
- sgm/modules/encoders/modules.py +50 -43
- util.py +1 -9
app.py
CHANGED
@@ -8,10 +8,56 @@ from omegaconf import OmegaConf
|
|
8 |
from contextlib import nullcontext
|
9 |
from pytorch_lightning import seed_everything
|
10 |
from os.path import join as ospj
|
|
|
|
|
|
|
11 |
|
12 |
from util import *
|
13 |
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def predict(cfgs, model, sampler, batch):
|
16 |
|
17 |
context = nullcontext if cfgs.aae_enabled else torch.no_grad
|
@@ -58,15 +104,8 @@ def demo_predict(input_blk, text, num_samples, steps, scale, seed, show_detail):
|
|
58 |
|
59 |
image = input_blk["image"]
|
60 |
mask = input_blk["mask"]
|
61 |
-
image = cv2.resize(image, (cfgs.W, cfgs.H))
|
62 |
-
mask = cv2.resize(mask, (cfgs.W, cfgs.H))
|
63 |
-
|
64 |
-
mask = (mask == 0).astype(np.int32)
|
65 |
|
66 |
-
image =
|
67 |
-
mask = torch.from_numpy(mask.transpose(2,0,1)).to(dtype=torch.float32).mean(dim=0, keepdim=True)
|
68 |
-
masked = image * mask
|
69 |
-
mask = 1 - mask
|
70 |
|
71 |
seg_mask = torch.cat((torch.ones(len(text)), torch.zeros(cfgs.seq_len-len(text))))
|
72 |
|
@@ -131,6 +170,7 @@ if __name__ == "__main__":
|
|
131 |
model = init_model(cfgs)
|
132 |
sampler = init_sampling(cfgs)
|
133 |
global_index = 0
|
|
|
134 |
|
135 |
block = gr.Blocks().queue()
|
136 |
with block:
|
@@ -161,6 +201,7 @@ if __name__ == "__main__":
|
|
161 |
with gr.Column():
|
162 |
|
163 |
input_blk = gr.Image(source='upload', tool='sketch', type="numpy", label="Input", height=512)
|
|
|
164 |
text = gr.Textbox(label="Text to render: (1~12 characters)", info="the text you want to render at the masked region")
|
165 |
run_button = gr.Button(variant="primary")
|
166 |
|
|
|
8 |
from contextlib import nullcontext
|
9 |
from pytorch_lightning import seed_everything
|
10 |
from os.path import join as ospj
|
11 |
+
from random import randint
|
12 |
+
from torchvision.utils import save_image
|
13 |
+
from torchvision.transforms import Resize
|
14 |
|
15 |
from util import *
|
16 |
|
17 |
|
18 |
+
def process(image, mask):
|
19 |
+
|
20 |
+
img_h, img_w = image.shape[:2]
|
21 |
+
|
22 |
+
mask = mask[...,:1]//255
|
23 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
|
24 |
+
if len(contours) != 1: raise gr.Error("One masked area only!")
|
25 |
+
|
26 |
+
m_x, m_y, m_w, m_h = cv2.boundingRect(contours[0])
|
27 |
+
c_x, c_y = m_x + m_w//2, m_y + m_h//2
|
28 |
+
|
29 |
+
if img_w > img_h:
|
30 |
+
if m_w > img_h: raise gr.Error("Illegal mask area!")
|
31 |
+
if c_x < img_w - c_x:
|
32 |
+
c_l = max(0, c_x - img_h//2)
|
33 |
+
c_r = c_l + img_h
|
34 |
+
else:
|
35 |
+
c_r = min(img_w, c_x + img_h//2)
|
36 |
+
c_l = c_r - img_h
|
37 |
+
image = image[:,c_l:c_r,:]
|
38 |
+
mask = mask[:,c_l:c_r,:]
|
39 |
+
else:
|
40 |
+
if m_h > img_w: raise gr.Error("Illegal mask area!")
|
41 |
+
if c_y < img_h - c_y:
|
42 |
+
c_t = max(0, c_y - img_w//2)
|
43 |
+
c_b = c_t + img_w
|
44 |
+
else:
|
45 |
+
c_b = min(img_h, c_y + img_w//2)
|
46 |
+
c_t = c_b - img_w
|
47 |
+
image = image[c_t:c_b,:,:]
|
48 |
+
mask = mask[c_t:c_b,:,:]
|
49 |
+
|
50 |
+
image = torch.from_numpy(image.transpose(2,0,1)).to(dtype=torch.float32) / 127.5 - 1.0
|
51 |
+
mask = torch.from_numpy(mask.transpose(2,0,1)).to(dtype=torch.float32)
|
52 |
+
|
53 |
+
image = resize(image[None])[0]
|
54 |
+
mask = resize(mask[None])[0]
|
55 |
+
masked = image * (1 - mask)
|
56 |
+
|
57 |
+
return image, mask, masked
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
def predict(cfgs, model, sampler, batch):
|
62 |
|
63 |
context = nullcontext if cfgs.aae_enabled else torch.no_grad
|
|
|
104 |
|
105 |
image = input_blk["image"]
|
106 |
mask = input_blk["mask"]
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
image, mask, masked = process(image, mask)
|
|
|
|
|
|
|
109 |
|
110 |
seg_mask = torch.cat((torch.ones(len(text)), torch.zeros(cfgs.seq_len-len(text))))
|
111 |
|
|
|
170 |
model = init_model(cfgs)
|
171 |
sampler = init_sampling(cfgs)
|
172 |
global_index = 0
|
173 |
+
resize = Resize((cfgs.H, cfgs.W))
|
174 |
|
175 |
block = gr.Blocks().queue()
|
176 |
with block:
|
|
|
201 |
with gr.Column():
|
202 |
|
203 |
input_blk = gr.Image(source='upload', tool='sketch', type="numpy", label="Input", height=512)
|
204 |
+
gr.Markdown("Notice: please draw horizontally to indicate only **one** masked area.")
|
205 |
text = gr.Textbox(label="Text to render: (1~12 characters)", info="the text you want to render at the masked region")
|
206 |
run_button = gr.Button(variant="primary")
|
207 |
|
checkpoints/{st-step=100000+la-step=100000-v2.ckpt → st-step=100000+la-step=100000-v1.ckpt}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edea71eb83b6be72c33ef787a7122a810a7b9257bf97a276ef322707d5769878
|
3 |
+
size 6148465904
|
configs/demo.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
type: "demo"
|
2 |
|
3 |
# path
|
4 |
-
load_ckpt_path: "./checkpoints/st-step=100000+la-step=100000-
|
5 |
model_cfg_path: "./configs/test/textdesign_sd_2.yaml"
|
6 |
|
7 |
# param
|
@@ -15,7 +15,7 @@ channel: 4 # AE latent channel
|
|
15 |
factor: 8 # AE downsample factor
|
16 |
scale: [4.0, 0.0] # content scale, style scale
|
17 |
noise_iters: 10
|
18 |
-
force_uc_zero_embeddings: ["
|
19 |
aae_enabled: False
|
20 |
detailed: False
|
21 |
|
|
|
1 |
type: "demo"
|
2 |
|
3 |
# path
|
4 |
+
load_ckpt_path: "./checkpoints/st-step=100000+la-step=100000-v1.ckpt"
|
5 |
model_cfg_path: "./configs/test/textdesign_sd_2.yaml"
|
6 |
|
7 |
# param
|
|
|
15 |
factor: 8 # AE downsample factor
|
16 |
scale: [4.0, 0.0] # content scale, style scale
|
17 |
noise_iters: 10
|
18 |
+
force_uc_zero_embeddings: ["label"]
|
19 |
aae_enabled: False
|
20 |
detailed: False
|
21 |
|
configs/test/textdesign_sd_2.yaml
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
model:
|
2 |
target: sgm.models.diffusion.DiffusionEngine
|
3 |
params:
|
4 |
-
opt_keys:
|
5 |
-
- t_attn
|
6 |
input_key: image
|
7 |
scale_factor: 0.18215
|
8 |
disable_first_stage_autocast: True
|
@@ -20,45 +18,54 @@ model:
|
|
20 |
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
21 |
|
22 |
network_config:
|
23 |
-
target: sgm.modules.diffusionmodules.openaimodel.
|
24 |
params:
|
|
|
25 |
in_channels: 9
|
26 |
out_channels: 4
|
27 |
ctrl_channels: 0
|
28 |
model_channels: 320
|
29 |
attention_resolutions: [4, 2, 1]
|
30 |
-
|
31 |
-
|
|
|
32 |
num_res_blocks: 2
|
33 |
channel_mult: [1, 2, 4, 4]
|
34 |
num_head_channels: 64
|
|
|
35 |
use_linear_in_transformer: True
|
36 |
transformer_depth: 1
|
37 |
-
|
|
|
|
|
38 |
|
39 |
conditioner_config:
|
40 |
target: sgm.modules.GeneralConditioner
|
41 |
params:
|
42 |
emb_models:
|
43 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
- is_trainable: False
|
45 |
-
emb_key: t_crossattn
|
46 |
-
ucg_rate: 0.1
|
47 |
input_key: label
|
48 |
target: sgm.modules.encoders.modules.LabelEncoder
|
49 |
params:
|
|
|
50 |
max_len: 12
|
51 |
emb_dim: 2048
|
52 |
n_heads: 8
|
53 |
n_trans_layers: 12
|
54 |
-
ckpt_path: ./checkpoints/encoders/LabelEncoder/epoch=19-step=7820.ckpt
|
55 |
# concat cond
|
56 |
- is_trainable: False
|
57 |
input_key: mask
|
58 |
-
target: sgm.modules.encoders.modules.
|
59 |
-
params:
|
60 |
-
in_channels: 1
|
61 |
-
multiplier: 0.125
|
62 |
- is_trainable: False
|
63 |
input_key: masked
|
64 |
target: sgm.modules.encoders.modules.LatentEncoder
|
@@ -88,7 +95,6 @@ model:
|
|
88 |
first_stage_config:
|
89 |
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper
|
90 |
params:
|
91 |
-
ckpt_path: ./checkpoints/AEs/AE_inpainting_2.safetensors
|
92 |
embed_dim: 4
|
93 |
monitor: val/rec_loss
|
94 |
ddconfig:
|
@@ -111,11 +117,16 @@ model:
|
|
111 |
params:
|
112 |
seq_len: 12
|
113 |
kernel_size: 3
|
114 |
-
gaussian_sigma:
|
115 |
min_attn_size: 16
|
116 |
-
lambda_local_loss: 0.
|
117 |
lambda_ocr_loss: 0.001
|
118 |
ocr_enabled: False
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
sigma_sampler_config:
|
121 |
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
|
|
|
1 |
model:
|
2 |
target: sgm.models.diffusion.DiffusionEngine
|
3 |
params:
|
|
|
|
|
4 |
input_key: image
|
5 |
scale_factor: 0.18215
|
6 |
disable_first_stage_autocast: True
|
|
|
18 |
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
19 |
|
20 |
network_config:
|
21 |
+
target: sgm.modules.diffusionmodules.openaimodel.UNetAddModel
|
22 |
params:
|
23 |
+
use_checkpoint: False
|
24 |
in_channels: 9
|
25 |
out_channels: 4
|
26 |
ctrl_channels: 0
|
27 |
model_channels: 320
|
28 |
attention_resolutions: [4, 2, 1]
|
29 |
+
attn_type: add_attn
|
30 |
+
attn_layers:
|
31 |
+
- output_blocks.6.1
|
32 |
num_res_blocks: 2
|
33 |
channel_mult: [1, 2, 4, 4]
|
34 |
num_head_channels: 64
|
35 |
+
use_spatial_transformer: True
|
36 |
use_linear_in_transformer: True
|
37 |
transformer_depth: 1
|
38 |
+
context_dim: 0
|
39 |
+
add_context_dim: 2048
|
40 |
+
legacy: False
|
41 |
|
42 |
conditioner_config:
|
43 |
target: sgm.modules.GeneralConditioner
|
44 |
params:
|
45 |
emb_models:
|
46 |
+
# crossattn cond
|
47 |
+
# - is_trainable: False
|
48 |
+
# input_key: txt
|
49 |
+
# target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
50 |
+
# params:
|
51 |
+
# arch: ViT-H-14
|
52 |
+
# version: ./checkpoints/encoders/OpenCLIP/ViT-H-14/open_clip_pytorch_model.bin
|
53 |
+
# layer: penultimate
|
54 |
+
# add crossattn cond
|
55 |
- is_trainable: False
|
|
|
|
|
56 |
input_key: label
|
57 |
target: sgm.modules.encoders.modules.LabelEncoder
|
58 |
params:
|
59 |
+
is_add_embedder: True
|
60 |
max_len: 12
|
61 |
emb_dim: 2048
|
62 |
n_heads: 8
|
63 |
n_trans_layers: 12
|
64 |
+
ckpt_path: ./checkpoints/encoders/LabelEncoder/epoch=19-step=7820.ckpt # ./checkpoints/encoders/LabelEncoder/epoch=19-step=7820.ckpt
|
65 |
# concat cond
|
66 |
- is_trainable: False
|
67 |
input_key: mask
|
68 |
+
target: sgm.modules.encoders.modules.IdentityEncoder
|
|
|
|
|
|
|
69 |
- is_trainable: False
|
70 |
input_key: masked
|
71 |
target: sgm.modules.encoders.modules.LatentEncoder
|
|
|
95 |
first_stage_config:
|
96 |
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper
|
97 |
params:
|
|
|
98 |
embed_dim: 4
|
99 |
monitor: val/rec_loss
|
100 |
ddconfig:
|
|
|
117 |
params:
|
118 |
seq_len: 12
|
119 |
kernel_size: 3
|
120 |
+
gaussian_sigma: 0.5
|
121 |
min_attn_size: 16
|
122 |
+
lambda_local_loss: 0.02
|
123 |
lambda_ocr_loss: 0.001
|
124 |
ocr_enabled: False
|
125 |
+
|
126 |
+
predictor_config:
|
127 |
+
target: sgm.modules.predictors.model.ParseqPredictor
|
128 |
+
params:
|
129 |
+
ckpt_path: "./checkpoints/predictors/parseq-bb5792a6.pt"
|
130 |
|
131 |
sigma_sampler_config:
|
132 |
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
|
sgm/modules/__init__.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from .encoders.modules import GeneralConditioner
|
2 |
|
3 |
UNCONDITIONAL_CONFIG = {
|
4 |
"target": "sgm.modules.GeneralConditioner",
|
|
|
1 |
+
from .encoders.modules import GeneralConditioner, DualConditioner
|
2 |
|
3 |
UNCONDITIONAL_CONFIG = {
|
4 |
"target": "sgm.modules.GeneralConditioner",
|
sgm/modules/attention.py
CHANGED
@@ -5,15 +5,53 @@ from typing import Any, Optional
|
|
5 |
import torch
|
6 |
import torch.nn.functional as F
|
7 |
from einops import rearrange, repeat
|
|
|
8 |
from torch import nn, einsum
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
try:
|
11 |
import xformers
|
12 |
import xformers.ops
|
|
|
13 |
XFORMERS_IS_AVAILABLE = True
|
14 |
except:
|
15 |
XFORMERS_IS_AVAILABLE = False
|
16 |
-
print("
|
|
|
|
|
17 |
|
18 |
|
19 |
def exists(val):
|
@@ -108,6 +146,51 @@ class LinearAttention(nn.Module):
|
|
108 |
return self.to_out(out)
|
109 |
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
class CrossAttention(nn.Module):
|
112 |
def __init__(
|
113 |
self,
|
@@ -115,7 +198,8 @@ class CrossAttention(nn.Module):
|
|
115 |
context_dim=None,
|
116 |
heads=8,
|
117 |
dim_head=64,
|
118 |
-
dropout=0.0
|
|
|
119 |
):
|
120 |
super().__init__()
|
121 |
inner_dim = dim_head * heads
|
@@ -128,38 +212,60 @@ class CrossAttention(nn.Module):
|
|
128 |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
129 |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
130 |
|
131 |
-
self.to_out = zero_module(
|
132 |
-
nn.
|
133 |
-
|
134 |
-
|
135 |
-
)
|
136 |
-
)
|
137 |
|
138 |
self.attn_map_cache = None
|
139 |
|
140 |
def forward(
|
141 |
self,
|
142 |
x,
|
143 |
-
context=None
|
|
|
|
|
|
|
144 |
):
|
145 |
h = self.heads
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
q = self.to_q(x)
|
148 |
context = default(context, x)
|
149 |
k = self.to_k(context)
|
150 |
v = self.to_v(context)
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
|
153 |
|
154 |
## old
|
|
|
155 |
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
156 |
del q, k
|
157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
# attention, what we cannot get enough of
|
159 |
-
|
160 |
-
sim = sim.softmax(dim=-1) # softmax on token dim
|
161 |
-
else:
|
162 |
-
sim = sim.sigmoid() # sigmoid on pixel dim
|
163 |
|
164 |
# save attn_map
|
165 |
if self.attn_map_cache is not None:
|
@@ -170,7 +276,20 @@ class CrossAttention(nn.Module):
|
|
170 |
|
171 |
out = einsum('b i j, b j d -> b i d', sim, v)
|
172 |
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
return self.to_out(out)
|
175 |
|
176 |
|
@@ -263,6 +382,10 @@ class MemoryEfficientCrossAttention(nn.Module):
|
|
263 |
|
264 |
|
265 |
class BasicTransformerBlock(nn.Module):
|
|
|
|
|
|
|
|
|
266 |
|
267 |
def __init__(
|
268 |
self,
|
@@ -270,78 +393,169 @@ class BasicTransformerBlock(nn.Module):
|
|
270 |
n_heads,
|
271 |
d_head,
|
272 |
dropout=0.0,
|
273 |
-
|
274 |
-
|
275 |
-
gated_ff=True
|
|
|
|
|
|
|
|
|
276 |
):
|
277 |
super().__init__()
|
278 |
-
|
279 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
self.attn1 = MemoryEfficientCrossAttention(
|
281 |
query_dim=dim,
|
282 |
heads=n_heads,
|
283 |
dim_head=d_head,
|
284 |
dropout=dropout,
|
285 |
-
context_dim=None
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
if
|
290 |
-
self.
|
291 |
query_dim=dim,
|
292 |
-
context_dim=
|
293 |
heads=n_heads,
|
294 |
dim_head=d_head,
|
295 |
-
dropout=dropout
|
296 |
-
|
297 |
-
self
|
298 |
-
|
299 |
-
|
300 |
-
if v_context_dim is not None and v_context_dim > 0:
|
301 |
-
self.v_attn = CrossAttention(
|
302 |
query_dim=dim,
|
303 |
-
context_dim=
|
304 |
heads=n_heads,
|
305 |
dim_head=d_head,
|
306 |
-
dropout=dropout
|
307 |
-
|
308 |
-
self
|
309 |
-
|
310 |
self.norm1 = nn.LayerNorm(dim)
|
|
|
311 |
self.norm3 = nn.LayerNorm(dim)
|
312 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
x = (
|
316 |
self.attn1(
|
317 |
self.norm1(x),
|
318 |
-
context=None
|
|
|
|
|
|
|
|
|
319 |
)
|
320 |
+ x
|
321 |
)
|
322 |
-
if hasattr(self, "
|
323 |
x = (
|
324 |
-
self.
|
325 |
-
self.
|
326 |
-
context=t_context
|
327 |
)
|
328 |
+ x
|
329 |
)
|
330 |
-
if hasattr(self, "
|
331 |
x = (
|
332 |
-
self.
|
333 |
-
self.
|
334 |
-
context=v_context
|
335 |
)
|
336 |
+ x
|
337 |
)
|
338 |
-
|
339 |
x = self.ff(self.norm3(x)) + x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
return x
|
342 |
|
343 |
|
344 |
-
class
|
345 |
"""
|
346 |
Transformer block for image-like data.
|
347 |
First, project the input (aka embedding)
|
@@ -358,12 +572,36 @@ class SpatialTransformer(nn.Module):
|
|
358 |
d_head,
|
359 |
depth=1,
|
360 |
dropout=0.0,
|
361 |
-
|
362 |
-
|
363 |
-
|
|
|
|
|
|
|
|
|
|
|
364 |
):
|
365 |
super().__init__()
|
366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
self.in_channels = in_channels
|
368 |
inner_dim = n_heads * d_head
|
369 |
self.norm = Normalize(in_channels)
|
@@ -381,8 +619,12 @@ class SpatialTransformer(nn.Module):
|
|
381 |
n_heads,
|
382 |
d_head,
|
383 |
dropout=dropout,
|
384 |
-
|
385 |
-
|
|
|
|
|
|
|
|
|
386 |
)
|
387 |
for d in range(depth)
|
388 |
]
|
@@ -392,11 +634,14 @@ class SpatialTransformer(nn.Module):
|
|
392 |
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
393 |
)
|
394 |
else:
|
|
|
395 |
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
|
396 |
self.use_linear = use_linear
|
397 |
|
398 |
-
def forward(self, x,
|
399 |
-
|
|
|
|
|
400 |
b, c, h, w = x.shape
|
401 |
x_in = x
|
402 |
x = self.norm(x)
|
@@ -406,11 +651,326 @@ class SpatialTransformer(nn.Module):
|
|
406 |
if self.use_linear:
|
407 |
x = self.proj_in(x)
|
408 |
for i, block in enumerate(self.transformer_blocks):
|
409 |
-
|
|
|
|
|
410 |
if self.use_linear:
|
411 |
x = self.proj_out(x)
|
412 |
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
413 |
if not self.use_linear:
|
414 |
x = self.proj_out(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
|
416 |
-
|
|
|
5 |
import torch
|
6 |
import torch.nn.functional as F
|
7 |
from einops import rearrange, repeat
|
8 |
+
from packaging import version
|
9 |
from torch import nn, einsum
|
10 |
|
11 |
+
|
12 |
+
if version.parse(torch.__version__) >= version.parse("2.0.0"):
|
13 |
+
SDP_IS_AVAILABLE = True
|
14 |
+
from torch.backends.cuda import SDPBackend, sdp_kernel
|
15 |
+
|
16 |
+
BACKEND_MAP = {
|
17 |
+
SDPBackend.MATH: {
|
18 |
+
"enable_math": True,
|
19 |
+
"enable_flash": False,
|
20 |
+
"enable_mem_efficient": False,
|
21 |
+
},
|
22 |
+
SDPBackend.FLASH_ATTENTION: {
|
23 |
+
"enable_math": False,
|
24 |
+
"enable_flash": True,
|
25 |
+
"enable_mem_efficient": False,
|
26 |
+
},
|
27 |
+
SDPBackend.EFFICIENT_ATTENTION: {
|
28 |
+
"enable_math": False,
|
29 |
+
"enable_flash": False,
|
30 |
+
"enable_mem_efficient": True,
|
31 |
+
},
|
32 |
+
None: {"enable_math": True, "enable_flash": True, "enable_mem_efficient": True},
|
33 |
+
}
|
34 |
+
else:
|
35 |
+
from contextlib import nullcontext
|
36 |
+
|
37 |
+
SDP_IS_AVAILABLE = False
|
38 |
+
sdp_kernel = nullcontext
|
39 |
+
BACKEND_MAP = {}
|
40 |
+
print(
|
41 |
+
f"No SDP backend available, likely because you are running in pytorch versions < 2.0. In fact, "
|
42 |
+
f"you are using PyTorch {torch.__version__}. You might want to consider upgrading."
|
43 |
+
)
|
44 |
+
|
45 |
try:
|
46 |
import xformers
|
47 |
import xformers.ops
|
48 |
+
|
49 |
XFORMERS_IS_AVAILABLE = True
|
50 |
except:
|
51 |
XFORMERS_IS_AVAILABLE = False
|
52 |
+
print("no module 'xformers'. Processing without...")
|
53 |
+
|
54 |
+
from .diffusionmodules.util import checkpoint
|
55 |
|
56 |
|
57 |
def exists(val):
|
|
|
146 |
return self.to_out(out)
|
147 |
|
148 |
|
149 |
+
class SpatialSelfAttention(nn.Module):
|
150 |
+
def __init__(self, in_channels):
|
151 |
+
super().__init__()
|
152 |
+
self.in_channels = in_channels
|
153 |
+
|
154 |
+
self.norm = Normalize(in_channels)
|
155 |
+
self.q = torch.nn.Conv2d(
|
156 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
157 |
+
)
|
158 |
+
self.k = torch.nn.Conv2d(
|
159 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
160 |
+
)
|
161 |
+
self.v = torch.nn.Conv2d(
|
162 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
163 |
+
)
|
164 |
+
self.proj_out = torch.nn.Conv2d(
|
165 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
166 |
+
)
|
167 |
+
|
168 |
+
def forward(self, x):
|
169 |
+
h_ = x
|
170 |
+
h_ = self.norm(h_)
|
171 |
+
q = self.q(h_)
|
172 |
+
k = self.k(h_)
|
173 |
+
v = self.v(h_)
|
174 |
+
|
175 |
+
# compute attention
|
176 |
+
b, c, h, w = q.shape
|
177 |
+
q = rearrange(q, "b c h w -> b (h w) c")
|
178 |
+
k = rearrange(k, "b c h w -> b c (h w)")
|
179 |
+
w_ = torch.einsum("bij,bjk->bik", q, k)
|
180 |
+
|
181 |
+
w_ = w_ * (int(c) ** (-0.5))
|
182 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
183 |
+
|
184 |
+
# attend to values
|
185 |
+
v = rearrange(v, "b c h w -> b c (h w)")
|
186 |
+
w_ = rearrange(w_, "b i j -> b j i")
|
187 |
+
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
188 |
+
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
189 |
+
h_ = self.proj_out(h_)
|
190 |
+
|
191 |
+
return x + h_
|
192 |
+
|
193 |
+
|
194 |
class CrossAttention(nn.Module):
|
195 |
def __init__(
|
196 |
self,
|
|
|
198 |
context_dim=None,
|
199 |
heads=8,
|
200 |
dim_head=64,
|
201 |
+
dropout=0.0,
|
202 |
+
backend=None,
|
203 |
):
|
204 |
super().__init__()
|
205 |
inner_dim = dim_head * heads
|
|
|
212 |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
213 |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
214 |
|
215 |
+
self.to_out = zero_module(nn.Sequential(
|
216 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
217 |
+
))
|
218 |
+
self.backend = backend
|
|
|
|
|
219 |
|
220 |
self.attn_map_cache = None
|
221 |
|
222 |
def forward(
|
223 |
self,
|
224 |
x,
|
225 |
+
context=None,
|
226 |
+
mask=None,
|
227 |
+
additional_tokens=None,
|
228 |
+
n_times_crossframe_attn_in_self=0,
|
229 |
):
|
230 |
h = self.heads
|
231 |
|
232 |
+
if additional_tokens is not None:
|
233 |
+
# get the number of masked tokens at the beginning of the output sequence
|
234 |
+
n_tokens_to_mask = additional_tokens.shape[1]
|
235 |
+
# add additional token
|
236 |
+
x = torch.cat([additional_tokens, x], dim=1)
|
237 |
+
|
238 |
q = self.to_q(x)
|
239 |
context = default(context, x)
|
240 |
k = self.to_k(context)
|
241 |
v = self.to_v(context)
|
242 |
|
243 |
+
if n_times_crossframe_attn_in_self:
|
244 |
+
# reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439
|
245 |
+
assert x.shape[0] % n_times_crossframe_attn_in_self == 0
|
246 |
+
n_cp = x.shape[0] // n_times_crossframe_attn_in_self
|
247 |
+
k = repeat(
|
248 |
+
k[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
|
249 |
+
)
|
250 |
+
v = repeat(
|
251 |
+
v[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
|
252 |
+
)
|
253 |
+
|
254 |
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
|
255 |
|
256 |
## old
|
257 |
+
|
258 |
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
259 |
del q, k
|
260 |
|
261 |
+
if exists(mask):
|
262 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
263 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
264 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
265 |
+
sim.masked_fill_(~mask, max_neg_value)
|
266 |
+
|
267 |
# attention, what we cannot get enough of
|
268 |
+
sim = sim.softmax(dim=-1)
|
|
|
|
|
|
|
269 |
|
270 |
# save attn_map
|
271 |
if self.attn_map_cache is not None:
|
|
|
276 |
|
277 |
out = einsum('b i j, b j d -> b i d', sim, v)
|
278 |
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
|
279 |
+
|
280 |
+
## new
|
281 |
+
# with sdp_kernel(**BACKEND_MAP[self.backend]):
|
282 |
+
# # print("dispatching into backend", self.backend, "q/k/v shape: ", q.shape, k.shape, v.shape)
|
283 |
+
# out = F.scaled_dot_product_attention(
|
284 |
+
# q, k, v, attn_mask=mask
|
285 |
+
# ) # scale is dim_head ** -0.5 per default
|
286 |
+
|
287 |
+
# del q, k, v
|
288 |
+
# out = rearrange(out, "b h n d -> b n (h d)", h=h)
|
289 |
+
|
290 |
+
if additional_tokens is not None:
|
291 |
+
# remove additional token
|
292 |
+
out = out[:, n_tokens_to_mask:]
|
293 |
return self.to_out(out)
|
294 |
|
295 |
|
|
|
382 |
|
383 |
|
384 |
class BasicTransformerBlock(nn.Module):
|
385 |
+
ATTENTION_MODES = {
|
386 |
+
"softmax": CrossAttention, # vanilla attention
|
387 |
+
"softmax-xformers": MemoryEfficientCrossAttention, # ampere
|
388 |
+
}
|
389 |
|
390 |
def __init__(
|
391 |
self,
|
|
|
393 |
n_heads,
|
394 |
d_head,
|
395 |
dropout=0.0,
|
396 |
+
context_dim=None,
|
397 |
+
add_context_dim=None,
|
398 |
+
gated_ff=True,
|
399 |
+
checkpoint=True,
|
400 |
+
disable_self_attn=False,
|
401 |
+
attn_mode="softmax",
|
402 |
+
sdp_backend=None,
|
403 |
):
|
404 |
super().__init__()
|
405 |
+
assert attn_mode in self.ATTENTION_MODES
|
406 |
+
if attn_mode != "softmax" and not XFORMERS_IS_AVAILABLE:
|
407 |
+
print(
|
408 |
+
f"Attention mode '{attn_mode}' is not available. Falling back to native attention. "
|
409 |
+
f"This is not a problem in Pytorch >= 2.0. FYI, you are running with PyTorch version {torch.__version__}"
|
410 |
+
)
|
411 |
+
attn_mode = "softmax"
|
412 |
+
elif attn_mode == "softmax" and not SDP_IS_AVAILABLE:
|
413 |
+
print(
|
414 |
+
"We do not support vanilla attention anymore, as it is too expensive. Sorry."
|
415 |
+
)
|
416 |
+
if not XFORMERS_IS_AVAILABLE:
|
417 |
+
assert (
|
418 |
+
False
|
419 |
+
), "Please install xformers via e.g. 'pip install xformers==0.0.16'"
|
420 |
+
else:
|
421 |
+
print("Falling back to xformers efficient attention.")
|
422 |
+
attn_mode = "softmax-xformers"
|
423 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
424 |
+
if version.parse(torch.__version__) >= version.parse("2.0.0"):
|
425 |
+
assert sdp_backend is None or isinstance(sdp_backend, SDPBackend)
|
426 |
+
else:
|
427 |
+
assert sdp_backend is None
|
428 |
+
self.disable_self_attn = disable_self_attn
|
429 |
self.attn1 = MemoryEfficientCrossAttention(
|
430 |
query_dim=dim,
|
431 |
heads=n_heads,
|
432 |
dim_head=d_head,
|
433 |
dropout=dropout,
|
434 |
+
context_dim=context_dim if self.disable_self_attn else None,
|
435 |
+
backend=sdp_backend,
|
436 |
+
) # is a self-attention if not self.disable_self_attn
|
437 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
438 |
+
if context_dim is not None and context_dim > 0:
|
439 |
+
self.attn2 = attn_cls(
|
440 |
query_dim=dim,
|
441 |
+
context_dim=context_dim,
|
442 |
heads=n_heads,
|
443 |
dim_head=d_head,
|
444 |
+
dropout=dropout,
|
445 |
+
backend=sdp_backend,
|
446 |
+
) # is self-attn if context is none
|
447 |
+
if add_context_dim is not None and add_context_dim > 0:
|
448 |
+
self.add_attn = attn_cls(
|
|
|
|
|
449 |
query_dim=dim,
|
450 |
+
context_dim=add_context_dim,
|
451 |
heads=n_heads,
|
452 |
dim_head=d_head,
|
453 |
+
dropout=dropout,
|
454 |
+
backend=sdp_backend,
|
455 |
+
) # is self-attn if context is none
|
456 |
+
self.add_norm = nn.LayerNorm(dim)
|
457 |
self.norm1 = nn.LayerNorm(dim)
|
458 |
+
self.norm2 = nn.LayerNorm(dim)
|
459 |
self.norm3 = nn.LayerNorm(dim)
|
460 |
+
self.checkpoint = checkpoint
|
461 |
+
|
462 |
+
def forward(
|
463 |
+
self, x, context=None, add_context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
|
464 |
+
):
|
465 |
+
kwargs = {"x": x}
|
466 |
+
|
467 |
+
if context is not None:
|
468 |
+
kwargs.update({"context": context})
|
469 |
+
|
470 |
+
if additional_tokens is not None:
|
471 |
+
kwargs.update({"additional_tokens": additional_tokens})
|
472 |
|
473 |
+
if n_times_crossframe_attn_in_self:
|
474 |
+
kwargs.update(
|
475 |
+
{"n_times_crossframe_attn_in_self": n_times_crossframe_attn_in_self}
|
476 |
+
)
|
477 |
+
|
478 |
+
return checkpoint(
|
479 |
+
self._forward, (x, context, add_context), self.parameters(), self.checkpoint
|
480 |
+
)
|
481 |
+
|
482 |
+
def _forward(
|
483 |
+
self, x, context=None, add_context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
|
484 |
+
):
|
485 |
x = (
|
486 |
self.attn1(
|
487 |
self.norm1(x),
|
488 |
+
context=context if self.disable_self_attn else None,
|
489 |
+
additional_tokens=additional_tokens,
|
490 |
+
n_times_crossframe_attn_in_self=n_times_crossframe_attn_in_self
|
491 |
+
if not self.disable_self_attn
|
492 |
+
else 0,
|
493 |
)
|
494 |
+ x
|
495 |
)
|
496 |
+
if hasattr(self, "attn2"):
|
497 |
x = (
|
498 |
+
self.attn2(
|
499 |
+
self.norm2(x), context=context, additional_tokens=additional_tokens
|
|
|
500 |
)
|
501 |
+ x
|
502 |
)
|
503 |
+
if hasattr(self, "add_attn"):
|
504 |
x = (
|
505 |
+
self.add_attn(
|
506 |
+
self.add_norm(x), context=add_context, additional_tokens=additional_tokens
|
|
|
507 |
)
|
508 |
+ x
|
509 |
)
|
|
|
510 |
x = self.ff(self.norm3(x)) + x
|
511 |
+
return x
|
512 |
+
|
513 |
+
|
514 |
+
class BasicTransformerSingleLayerBlock(nn.Module):
|
515 |
+
ATTENTION_MODES = {
|
516 |
+
"softmax": CrossAttention, # vanilla attention
|
517 |
+
"softmax-xformers": MemoryEfficientCrossAttention # on the A100s not quite as fast as the above version
|
518 |
+
# (todo might depend on head_dim, check, falls back to semi-optimized kernels for dim!=[16,32,64,128])
|
519 |
+
}
|
520 |
+
|
521 |
+
def __init__(
|
522 |
+
self,
|
523 |
+
dim,
|
524 |
+
n_heads,
|
525 |
+
d_head,
|
526 |
+
dropout=0.0,
|
527 |
+
context_dim=None,
|
528 |
+
gated_ff=True,
|
529 |
+
checkpoint=True,
|
530 |
+
attn_mode="softmax",
|
531 |
+
):
|
532 |
+
super().__init__()
|
533 |
+
assert attn_mode in self.ATTENTION_MODES
|
534 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
535 |
+
self.attn1 = attn_cls(
|
536 |
+
query_dim=dim,
|
537 |
+
heads=n_heads,
|
538 |
+
dim_head=d_head,
|
539 |
+
dropout=dropout,
|
540 |
+
context_dim=context_dim,
|
541 |
+
)
|
542 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
543 |
+
self.norm1 = nn.LayerNorm(dim)
|
544 |
+
self.norm2 = nn.LayerNorm(dim)
|
545 |
+
self.checkpoint = checkpoint
|
546 |
|
547 |
+
def forward(self, x, context=None):
|
548 |
+
return checkpoint(
|
549 |
+
self._forward, (x, context), self.parameters(), self.checkpoint
|
550 |
+
)
|
551 |
+
|
552 |
+
def _forward(self, x, context=None):
|
553 |
+
x = self.attn1(self.norm1(x), context=context) + x
|
554 |
+
x = self.ff(self.norm2(x)) + x
|
555 |
return x
|
556 |
|
557 |
|
558 |
+
class SpatialTransformer(nn.Module):
|
559 |
"""
|
560 |
Transformer block for image-like data.
|
561 |
First, project the input (aka embedding)
|
|
|
572 |
d_head,
|
573 |
depth=1,
|
574 |
dropout=0.0,
|
575 |
+
context_dim=None,
|
576 |
+
add_context_dim=None,
|
577 |
+
disable_self_attn=False,
|
578 |
+
use_linear=False,
|
579 |
+
attn_type="softmax",
|
580 |
+
use_checkpoint=True,
|
581 |
+
# sdp_backend=SDPBackend.FLASH_ATTENTION
|
582 |
+
sdp_backend=None,
|
583 |
):
|
584 |
super().__init__()
|
585 |
+
# print(
|
586 |
+
# f"constructing {self.__class__.__name__} of depth {depth} w/ {in_channels} channels and {n_heads} heads"
|
587 |
+
# )
|
588 |
+
from omegaconf import ListConfig
|
589 |
+
|
590 |
+
if exists(context_dim) and not isinstance(context_dim, (list, ListConfig)):
|
591 |
+
context_dim = [context_dim]
|
592 |
+
if exists(context_dim) and isinstance(context_dim, list):
|
593 |
+
if depth != len(context_dim):
|
594 |
+
# print(
|
595 |
+
# f"WARNING: {self.__class__.__name__}: Found context dims {context_dim} of depth {len(context_dim)}, "
|
596 |
+
# f"which does not match the specified 'depth' of {depth}. Setting context_dim to {depth * [context_dim[0]]} now."
|
597 |
+
# )
|
598 |
+
# depth does not match context dims.
|
599 |
+
assert all(
|
600 |
+
map(lambda x: x == context_dim[0], context_dim)
|
601 |
+
), "need homogenous context_dim to match depth automatically"
|
602 |
+
context_dim = depth * [context_dim[0]]
|
603 |
+
elif context_dim is None:
|
604 |
+
context_dim = [None] * depth
|
605 |
self.in_channels = in_channels
|
606 |
inner_dim = n_heads * d_head
|
607 |
self.norm = Normalize(in_channels)
|
|
|
619 |
n_heads,
|
620 |
d_head,
|
621 |
dropout=dropout,
|
622 |
+
context_dim=context_dim[d],
|
623 |
+
add_context_dim=add_context_dim,
|
624 |
+
disable_self_attn=disable_self_attn,
|
625 |
+
attn_mode=attn_type,
|
626 |
+
checkpoint=use_checkpoint,
|
627 |
+
sdp_backend=sdp_backend,
|
628 |
)
|
629 |
for d in range(depth)
|
630 |
]
|
|
|
634 |
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
635 |
)
|
636 |
else:
|
637 |
+
# self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
638 |
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
|
639 |
self.use_linear = use_linear
|
640 |
|
641 |
+
def forward(self, x, context=None, add_context=None):
|
642 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
643 |
+
if not isinstance(context, list):
|
644 |
+
context = [context]
|
645 |
b, c, h, w = x.shape
|
646 |
x_in = x
|
647 |
x = self.norm(x)
|
|
|
651 |
if self.use_linear:
|
652 |
x = self.proj_in(x)
|
653 |
for i, block in enumerate(self.transformer_blocks):
|
654 |
+
if i > 0 and len(context) == 1:
|
655 |
+
i = 0 # use same context for each block
|
656 |
+
x = block(x, context=context[i], add_context=add_context)
|
657 |
if self.use_linear:
|
658 |
x = self.proj_out(x)
|
659 |
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
660 |
if not self.use_linear:
|
661 |
x = self.proj_out(x)
|
662 |
+
return x + x_in
|
663 |
+
|
664 |
+
|
665 |
+
def benchmark_attn():
|
666 |
+
# Lets define a helpful benchmarking function:
|
667 |
+
# https://pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial.html
|
668 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
669 |
+
import torch.nn.functional as F
|
670 |
+
import torch.utils.benchmark as benchmark
|
671 |
+
|
672 |
+
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
|
673 |
+
t0 = benchmark.Timer(
|
674 |
+
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
|
675 |
+
)
|
676 |
+
return t0.blocked_autorange().mean * 1e6
|
677 |
+
|
678 |
+
# Lets define the hyper-parameters of our input
|
679 |
+
batch_size = 32
|
680 |
+
max_sequence_len = 1024
|
681 |
+
num_heads = 32
|
682 |
+
embed_dimension = 32
|
683 |
+
|
684 |
+
dtype = torch.float16
|
685 |
+
|
686 |
+
query = torch.rand(
|
687 |
+
batch_size,
|
688 |
+
num_heads,
|
689 |
+
max_sequence_len,
|
690 |
+
embed_dimension,
|
691 |
+
device=device,
|
692 |
+
dtype=dtype,
|
693 |
+
)
|
694 |
+
key = torch.rand(
|
695 |
+
batch_size,
|
696 |
+
num_heads,
|
697 |
+
max_sequence_len,
|
698 |
+
embed_dimension,
|
699 |
+
device=device,
|
700 |
+
dtype=dtype,
|
701 |
+
)
|
702 |
+
value = torch.rand(
|
703 |
+
batch_size,
|
704 |
+
num_heads,
|
705 |
+
max_sequence_len,
|
706 |
+
embed_dimension,
|
707 |
+
device=device,
|
708 |
+
dtype=dtype,
|
709 |
+
)
|
710 |
+
|
711 |
+
print(f"q/k/v shape:", query.shape, key.shape, value.shape)
|
712 |
+
|
713 |
+
# Lets explore the speed of each of the 3 implementations
|
714 |
+
from torch.backends.cuda import SDPBackend, sdp_kernel
|
715 |
+
|
716 |
+
# Helpful arguments mapper
|
717 |
+
backend_map = {
|
718 |
+
SDPBackend.MATH: {
|
719 |
+
"enable_math": True,
|
720 |
+
"enable_flash": False,
|
721 |
+
"enable_mem_efficient": False,
|
722 |
+
},
|
723 |
+
SDPBackend.FLASH_ATTENTION: {
|
724 |
+
"enable_math": False,
|
725 |
+
"enable_flash": True,
|
726 |
+
"enable_mem_efficient": False,
|
727 |
+
},
|
728 |
+
SDPBackend.EFFICIENT_ATTENTION: {
|
729 |
+
"enable_math": False,
|
730 |
+
"enable_flash": False,
|
731 |
+
"enable_mem_efficient": True,
|
732 |
+
},
|
733 |
+
}
|
734 |
+
|
735 |
+
from torch.profiler import ProfilerActivity, profile, record_function
|
736 |
+
|
737 |
+
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA]
|
738 |
+
|
739 |
+
print(
|
740 |
+
f"The default implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
741 |
+
)
|
742 |
+
with profile(
|
743 |
+
activities=activities, record_shapes=False, profile_memory=True
|
744 |
+
) as prof:
|
745 |
+
with record_function("Default detailed stats"):
|
746 |
+
for _ in range(25):
|
747 |
+
o = F.scaled_dot_product_attention(query, key, value)
|
748 |
+
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
749 |
+
|
750 |
+
print(
|
751 |
+
f"The math implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
752 |
+
)
|
753 |
+
with sdp_kernel(**backend_map[SDPBackend.MATH]):
|
754 |
+
with profile(
|
755 |
+
activities=activities, record_shapes=False, profile_memory=True
|
756 |
+
) as prof:
|
757 |
+
with record_function("Math implmentation stats"):
|
758 |
+
for _ in range(25):
|
759 |
+
o = F.scaled_dot_product_attention(query, key, value)
|
760 |
+
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
761 |
+
|
762 |
+
with sdp_kernel(**backend_map[SDPBackend.FLASH_ATTENTION]):
|
763 |
+
try:
|
764 |
+
print(
|
765 |
+
f"The flash attention implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
766 |
+
)
|
767 |
+
except RuntimeError:
|
768 |
+
print("FlashAttention is not supported. See warnings for reasons.")
|
769 |
+
with profile(
|
770 |
+
activities=activities, record_shapes=False, profile_memory=True
|
771 |
+
) as prof:
|
772 |
+
with record_function("FlashAttention stats"):
|
773 |
+
for _ in range(25):
|
774 |
+
o = F.scaled_dot_product_attention(query, key, value)
|
775 |
+
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
776 |
+
|
777 |
+
with sdp_kernel(**backend_map[SDPBackend.EFFICIENT_ATTENTION]):
|
778 |
+
try:
|
779 |
+
print(
|
780 |
+
f"The memory efficient implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
781 |
+
)
|
782 |
+
except RuntimeError:
|
783 |
+
print("EfficientAttention is not supported. See warnings for reasons.")
|
784 |
+
with profile(
|
785 |
+
activities=activities, record_shapes=False, profile_memory=True
|
786 |
+
) as prof:
|
787 |
+
with record_function("EfficientAttention stats"):
|
788 |
+
for _ in range(25):
|
789 |
+
o = F.scaled_dot_product_attention(query, key, value)
|
790 |
+
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
791 |
+
|
792 |
+
|
793 |
+
def run_model(model, x, context):
|
794 |
+
return model(x, context)
|
795 |
+
|
796 |
+
|
797 |
+
def benchmark_transformer_blocks():
|
798 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
799 |
+
import torch.utils.benchmark as benchmark
|
800 |
+
|
801 |
+
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
|
802 |
+
t0 = benchmark.Timer(
|
803 |
+
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
|
804 |
+
)
|
805 |
+
return t0.blocked_autorange().mean * 1e6
|
806 |
+
|
807 |
+
checkpoint = True
|
808 |
+
compile = False
|
809 |
+
|
810 |
+
batch_size = 32
|
811 |
+
h, w = 64, 64
|
812 |
+
context_len = 77
|
813 |
+
embed_dimension = 1024
|
814 |
+
context_dim = 1024
|
815 |
+
d_head = 64
|
816 |
+
|
817 |
+
transformer_depth = 4
|
818 |
+
|
819 |
+
n_heads = embed_dimension // d_head
|
820 |
+
|
821 |
+
dtype = torch.float16
|
822 |
+
|
823 |
+
model_native = SpatialTransformer(
|
824 |
+
embed_dimension,
|
825 |
+
n_heads,
|
826 |
+
d_head,
|
827 |
+
context_dim=context_dim,
|
828 |
+
use_linear=True,
|
829 |
+
use_checkpoint=checkpoint,
|
830 |
+
attn_type="softmax",
|
831 |
+
depth=transformer_depth,
|
832 |
+
sdp_backend=SDPBackend.FLASH_ATTENTION,
|
833 |
+
).to(device)
|
834 |
+
model_efficient_attn = SpatialTransformer(
|
835 |
+
embed_dimension,
|
836 |
+
n_heads,
|
837 |
+
d_head,
|
838 |
+
context_dim=context_dim,
|
839 |
+
use_linear=True,
|
840 |
+
depth=transformer_depth,
|
841 |
+
use_checkpoint=checkpoint,
|
842 |
+
attn_type="softmax-xformers",
|
843 |
+
).to(device)
|
844 |
+
if not checkpoint and compile:
|
845 |
+
print("compiling models")
|
846 |
+
model_native = torch.compile(model_native)
|
847 |
+
model_efficient_attn = torch.compile(model_efficient_attn)
|
848 |
+
|
849 |
+
x = torch.rand(batch_size, embed_dimension, h, w, device=device, dtype=dtype)
|
850 |
+
c = torch.rand(batch_size, context_len, context_dim, device=device, dtype=dtype)
|
851 |
+
|
852 |
+
from torch.profiler import ProfilerActivity, profile, record_function
|
853 |
+
|
854 |
+
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA]
|
855 |
+
|
856 |
+
with torch.autocast("cuda"):
|
857 |
+
print(
|
858 |
+
f"The native model runs in {benchmark_torch_function_in_microseconds(model_native.forward, x, c):.3f} microseconds"
|
859 |
+
)
|
860 |
+
print(
|
861 |
+
f"The efficientattn model runs in {benchmark_torch_function_in_microseconds(model_efficient_attn.forward, x, c):.3f} microseconds"
|
862 |
+
)
|
863 |
+
|
864 |
+
print(75 * "+")
|
865 |
+
print("NATIVE")
|
866 |
+
print(75 * "+")
|
867 |
+
torch.cuda.reset_peak_memory_stats()
|
868 |
+
with profile(
|
869 |
+
activities=activities, record_shapes=False, profile_memory=True
|
870 |
+
) as prof:
|
871 |
+
with record_function("NativeAttention stats"):
|
872 |
+
for _ in range(25):
|
873 |
+
model_native(x, c)
|
874 |
+
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
875 |
+
print(torch.cuda.max_memory_allocated() * 1e-9, "GB used by native block")
|
876 |
+
|
877 |
+
print(75 * "+")
|
878 |
+
print("Xformers")
|
879 |
+
print(75 * "+")
|
880 |
+
torch.cuda.reset_peak_memory_stats()
|
881 |
+
with profile(
|
882 |
+
activities=activities, record_shapes=False, profile_memory=True
|
883 |
+
) as prof:
|
884 |
+
with record_function("xformers stats"):
|
885 |
+
for _ in range(25):
|
886 |
+
model_efficient_attn(x, c)
|
887 |
+
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
888 |
+
print(torch.cuda.max_memory_allocated() * 1e-9, "GB used by xformers block")
|
889 |
+
|
890 |
+
|
891 |
+
def test01():
|
892 |
+
# conv1x1 vs linear
|
893 |
+
from ..util import count_params
|
894 |
+
|
895 |
+
conv = nn.Conv2d(3, 32, kernel_size=1).cuda()
|
896 |
+
print(count_params(conv))
|
897 |
+
linear = torch.nn.Linear(3, 32).cuda()
|
898 |
+
print(count_params(linear))
|
899 |
+
|
900 |
+
print(conv.weight.shape)
|
901 |
+
|
902 |
+
# use same initialization
|
903 |
+
linear.weight = torch.nn.Parameter(conv.weight.squeeze(-1).squeeze(-1))
|
904 |
+
linear.bias = torch.nn.Parameter(conv.bias)
|
905 |
+
|
906 |
+
print(linear.weight.shape)
|
907 |
+
|
908 |
+
x = torch.randn(11, 3, 64, 64).cuda()
|
909 |
+
|
910 |
+
xr = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
911 |
+
print(xr.shape)
|
912 |
+
out_linear = linear(xr)
|
913 |
+
print(out_linear.mean(), out_linear.shape)
|
914 |
+
|
915 |
+
out_conv = conv(x)
|
916 |
+
print(out_conv.mean(), out_conv.shape)
|
917 |
+
print("done with test01.\n")
|
918 |
+
|
919 |
+
|
920 |
+
def test02():
|
921 |
+
# try cosine flash attention
|
922 |
+
import time
|
923 |
+
|
924 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
925 |
+
torch.backends.cudnn.allow_tf32 = True
|
926 |
+
torch.backends.cudnn.benchmark = True
|
927 |
+
print("testing cosine flash attention...")
|
928 |
+
DIM = 1024
|
929 |
+
SEQLEN = 4096
|
930 |
+
BS = 16
|
931 |
+
|
932 |
+
print(" softmax (vanilla) first...")
|
933 |
+
model = BasicTransformerBlock(
|
934 |
+
dim=DIM,
|
935 |
+
n_heads=16,
|
936 |
+
d_head=64,
|
937 |
+
dropout=0.0,
|
938 |
+
context_dim=None,
|
939 |
+
attn_mode="softmax",
|
940 |
+
).cuda()
|
941 |
+
try:
|
942 |
+
x = torch.randn(BS, SEQLEN, DIM).cuda()
|
943 |
+
tic = time.time()
|
944 |
+
y = model(x)
|
945 |
+
toc = time.time()
|
946 |
+
print(y.shape, toc - tic)
|
947 |
+
except RuntimeError as e:
|
948 |
+
# likely oom
|
949 |
+
print(str(e))
|
950 |
+
|
951 |
+
print("\n now flash-cosine...")
|
952 |
+
model = BasicTransformerBlock(
|
953 |
+
dim=DIM,
|
954 |
+
n_heads=16,
|
955 |
+
d_head=64,
|
956 |
+
dropout=0.0,
|
957 |
+
context_dim=None,
|
958 |
+
attn_mode="flash-cosine",
|
959 |
+
).cuda()
|
960 |
+
x = torch.randn(BS, SEQLEN, DIM).cuda()
|
961 |
+
tic = time.time()
|
962 |
+
y = model(x)
|
963 |
+
toc = time.time()
|
964 |
+
print(y.shape, toc - tic)
|
965 |
+
print("done with test02.\n")
|
966 |
+
|
967 |
+
|
968 |
+
if __name__ == "__main__":
|
969 |
+
# test01()
|
970 |
+
# test02()
|
971 |
+
# test03()
|
972 |
+
|
973 |
+
# benchmark_attn()
|
974 |
+
benchmark_transformer_blocks()
|
975 |
|
976 |
+
print("done.")
|
sgm/modules/diffusionmodules/__init__.py
CHANGED
@@ -2,6 +2,6 @@ from .denoiser import Denoiser
|
|
2 |
from .discretizer import Discretization
|
3 |
from .loss import StandardDiffusionLoss
|
4 |
from .model import Model, Encoder, Decoder
|
5 |
-
from .openaimodel import
|
6 |
from .sampling import BaseDiffusionSampler
|
7 |
from .wrappers import OpenAIWrapper
|
|
|
2 |
from .discretizer import Discretization
|
3 |
from .loss import StandardDiffusionLoss
|
4 |
from .model import Model, Encoder, Decoder
|
5 |
+
from .openaimodel import UNetModel
|
6 |
from .sampling import BaseDiffusionSampler
|
7 |
from .wrappers import OpenAIWrapper
|
sgm/modules/diffusionmodules/guiders.py
CHANGED
@@ -11,8 +11,8 @@ class VanillaCFG:
|
|
11 |
"""
|
12 |
|
13 |
def __init__(self, scale, dyn_thresh_config=None):
|
14 |
-
|
15 |
-
self.
|
16 |
self.dyn_thresh = instantiate_from_config(
|
17 |
default(
|
18 |
dyn_thresh_config,
|
@@ -24,14 +24,15 @@ class VanillaCFG:
|
|
24 |
|
25 |
def __call__(self, x, sigma):
|
26 |
x_u, x_c = x.chunk(2)
|
27 |
-
|
|
|
28 |
return x_pred
|
29 |
|
30 |
def prepare_inputs(self, x, s, c, uc):
|
31 |
c_out = dict()
|
32 |
|
33 |
for k in c:
|
34 |
-
if k in ["vector", "
|
35 |
c_out[k] = torch.cat((uc[k], c[k]), 0)
|
36 |
else:
|
37 |
assert c[k] == uc[k]
|
@@ -39,6 +40,34 @@ class VanillaCFG:
|
|
39 |
return torch.cat([x] * 2), torch.cat([s] * 2), c_out
|
40 |
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
class IdentityGuider:
|
43 |
def __call__(self, x, sigma):
|
44 |
return x
|
|
|
11 |
"""
|
12 |
|
13 |
def __init__(self, scale, dyn_thresh_config=None):
|
14 |
+
scale_schedule = lambda scale, sigma: scale # independent of step
|
15 |
+
self.scale_schedule = partial(scale_schedule, scale)
|
16 |
self.dyn_thresh = instantiate_from_config(
|
17 |
default(
|
18 |
dyn_thresh_config,
|
|
|
24 |
|
25 |
def __call__(self, x, sigma):
|
26 |
x_u, x_c = x.chunk(2)
|
27 |
+
scale_value = self.scale_schedule(sigma)
|
28 |
+
x_pred = self.dyn_thresh(x_u, x_c, scale_value)
|
29 |
return x_pred
|
30 |
|
31 |
def prepare_inputs(self, x, s, c, uc):
|
32 |
c_out = dict()
|
33 |
|
34 |
for k in c:
|
35 |
+
if k in ["vector", "crossattn", "add_crossattn", "concat"]:
|
36 |
c_out[k] = torch.cat((uc[k], c[k]), 0)
|
37 |
else:
|
38 |
assert c[k] == uc[k]
|
|
|
40 |
return torch.cat([x] * 2), torch.cat([s] * 2), c_out
|
41 |
|
42 |
|
43 |
+
class DualCFG:
|
44 |
+
|
45 |
+
def __init__(self, scale):
|
46 |
+
self.scale = scale
|
47 |
+
self.dyn_thresh = instantiate_from_config(
|
48 |
+
{
|
49 |
+
"target": "sgm.modules.diffusionmodules.sampling_utils.DualThresholding"
|
50 |
+
},
|
51 |
+
)
|
52 |
+
|
53 |
+
def __call__(self, x, sigma):
|
54 |
+
x_u_1, x_u_2, x_c = x.chunk(3)
|
55 |
+
x_pred = self.dyn_thresh(x_u_1, x_u_2, x_c, self.scale)
|
56 |
+
return x_pred
|
57 |
+
|
58 |
+
def prepare_inputs(self, x, s, c, uc_1, uc_2):
|
59 |
+
c_out = dict()
|
60 |
+
|
61 |
+
for k in c:
|
62 |
+
if k in ["vector", "crossattn", "concat", "add_crossattn"]:
|
63 |
+
c_out[k] = torch.cat((uc_1[k], uc_2[k], c[k]), 0)
|
64 |
+
else:
|
65 |
+
assert c[k] == uc_1[k]
|
66 |
+
c_out[k] = c[k]
|
67 |
+
return torch.cat([x] * 3), torch.cat([s] * 3), c_out
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
class IdentityGuider:
|
72 |
def __call__(self, x, sigma):
|
73 |
return x
|
sgm/modules/diffusionmodules/loss.py
CHANGED
@@ -78,9 +78,7 @@ class FullLoss(StandardDiffusionLoss):
|
|
78 |
min_attn_size=16,
|
79 |
lambda_local_loss=0.0,
|
80 |
lambda_ocr_loss=0.0,
|
81 |
-
lambda_style_loss=0.0,
|
82 |
ocr_enabled = False,
|
83 |
-
style_enabled = False,
|
84 |
predictor_config = None,
|
85 |
*args, **kwarg
|
86 |
):
|
@@ -93,9 +91,7 @@ class FullLoss(StandardDiffusionLoss):
|
|
93 |
self.min_attn_size = min_attn_size
|
94 |
self.lambda_local_loss = lambda_local_loss
|
95 |
self.lambda_ocr_loss = lambda_ocr_loss
|
96 |
-
self.lambda_style_loss = lambda_style_loss
|
97 |
|
98 |
-
self.style_enabled = style_enabled
|
99 |
self.ocr_enabled = ocr_enabled
|
100 |
if ocr_enabled:
|
101 |
self.predictor = instantiate_from_config(predictor_config)
|
@@ -152,15 +148,9 @@ class FullLoss(StandardDiffusionLoss):
|
|
152 |
ocr_loss = self.get_ocr_loss(model_output, batch["r_bbox"], batch["label"], first_stage_model, scaler)
|
153 |
ocr_loss = ocr_loss.mean()
|
154 |
|
155 |
-
if self.style_enabled:
|
156 |
-
style_loss = self.get_style_local_loss(network.diffusion_model.attn_map_cache, batch["mask"])
|
157 |
-
style_loss = style_loss.mean()
|
158 |
-
|
159 |
loss = diff_loss + self.lambda_local_loss * local_loss
|
160 |
if self.ocr_enabled:
|
161 |
loss += self.lambda_ocr_loss * ocr_loss
|
162 |
-
if self.style_enabled:
|
163 |
-
loss += self.lambda_style_loss * style_loss
|
164 |
|
165 |
loss_dict = {
|
166 |
"loss/diff_loss": diff_loss,
|
@@ -170,8 +160,6 @@ class FullLoss(StandardDiffusionLoss):
|
|
170 |
|
171 |
if self.ocr_enabled:
|
172 |
loss_dict["loss/ocr_loss"] = ocr_loss
|
173 |
-
if self.style_enabled:
|
174 |
-
loss_dict["loss/style_loss"] = style_loss
|
175 |
|
176 |
return loss, loss_dict
|
177 |
|
@@ -196,9 +184,6 @@ class FullLoss(StandardDiffusionLoss):
|
|
196 |
|
197 |
for item in attn_map_cache:
|
198 |
|
199 |
-
name = item["name"]
|
200 |
-
if not name.endswith("t_attn"): continue
|
201 |
-
|
202 |
heads = item["heads"]
|
203 |
size = item["size"]
|
204 |
attn_map = item["attn_map"]
|
@@ -241,9 +226,6 @@ class FullLoss(StandardDiffusionLoss):
|
|
241 |
|
242 |
for item in attn_map_cache:
|
243 |
|
244 |
-
name = item["name"]
|
245 |
-
if not name.endswith("t_attn"): continue
|
246 |
-
|
247 |
heads = item["heads"]
|
248 |
size = item["size"]
|
249 |
attn_map = item["attn_map"]
|
@@ -252,7 +234,7 @@ class FullLoss(StandardDiffusionLoss):
|
|
252 |
|
253 |
seg_l = seg_mask.shape[1]
|
254 |
|
255 |
-
bh, n, l = attn_map.shape # bh: batch size * heads / n: pixel length(h*w) / l: token length
|
256 |
attn_map = attn_map.reshape((-1, heads, n, l)) # b, h, n, l
|
257 |
|
258 |
assert seg_l <= l
|
@@ -283,43 +265,4 @@ class FullLoss(StandardDiffusionLoss):
|
|
283 |
|
284 |
loss = loss / count
|
285 |
|
286 |
-
return loss
|
287 |
-
|
288 |
-
def get_style_local_loss(self, attn_map_cache, mask):
|
289 |
-
|
290 |
-
loss = 0
|
291 |
-
count = 0
|
292 |
-
|
293 |
-
for item in attn_map_cache:
|
294 |
-
|
295 |
-
name = item["name"]
|
296 |
-
if not name.endswith("v_attn"): continue
|
297 |
-
|
298 |
-
heads = item["heads"]
|
299 |
-
size = item["size"]
|
300 |
-
attn_map = item["attn_map"]
|
301 |
-
|
302 |
-
if size < self.min_attn_size: continue
|
303 |
-
|
304 |
-
bh, n, l = attn_map.shape # bh: batch size * heads / n: pixel length(h*w) / l: token length
|
305 |
-
attn_map = attn_map.reshape((-1, heads, n, l)) # b, h, n, l
|
306 |
-
attn_map = attn_map.permute(0, 1, 3, 2) # b, h, l, n
|
307 |
-
attn_map = attn_map.mean(dim = 1) # b, l, n
|
308 |
-
|
309 |
-
mask_map = F.interpolate(mask, (size, size))
|
310 |
-
mask_map = mask_map.reshape((-1, l, n)) # b, l, n
|
311 |
-
n_mask_map = 1 - mask_map
|
312 |
-
|
313 |
-
p_loss = (mask_map * attn_map).sum(dim = -1) / (mask_map.sum(dim = -1) + 1e-5) # b, l
|
314 |
-
n_loss = (n_mask_map * attn_map).sum(dim = -1) / (n_mask_map.sum(dim = -1) + 1e-5) # b, l
|
315 |
-
|
316 |
-
p_loss = p_loss.mean(dim = -1)
|
317 |
-
n_loss = n_loss.mean(dim = -1)
|
318 |
-
|
319 |
-
f_loss = n_loss - p_loss # b,
|
320 |
-
loss += f_loss
|
321 |
-
count += 1
|
322 |
-
|
323 |
-
loss = loss / count
|
324 |
-
|
325 |
return loss
|
|
|
78 |
min_attn_size=16,
|
79 |
lambda_local_loss=0.0,
|
80 |
lambda_ocr_loss=0.0,
|
|
|
81 |
ocr_enabled = False,
|
|
|
82 |
predictor_config = None,
|
83 |
*args, **kwarg
|
84 |
):
|
|
|
91 |
self.min_attn_size = min_attn_size
|
92 |
self.lambda_local_loss = lambda_local_loss
|
93 |
self.lambda_ocr_loss = lambda_ocr_loss
|
|
|
94 |
|
|
|
95 |
self.ocr_enabled = ocr_enabled
|
96 |
if ocr_enabled:
|
97 |
self.predictor = instantiate_from_config(predictor_config)
|
|
|
148 |
ocr_loss = self.get_ocr_loss(model_output, batch["r_bbox"], batch["label"], first_stage_model, scaler)
|
149 |
ocr_loss = ocr_loss.mean()
|
150 |
|
|
|
|
|
|
|
|
|
151 |
loss = diff_loss + self.lambda_local_loss * local_loss
|
152 |
if self.ocr_enabled:
|
153 |
loss += self.lambda_ocr_loss * ocr_loss
|
|
|
|
|
154 |
|
155 |
loss_dict = {
|
156 |
"loss/diff_loss": diff_loss,
|
|
|
160 |
|
161 |
if self.ocr_enabled:
|
162 |
loss_dict["loss/ocr_loss"] = ocr_loss
|
|
|
|
|
163 |
|
164 |
return loss, loss_dict
|
165 |
|
|
|
184 |
|
185 |
for item in attn_map_cache:
|
186 |
|
|
|
|
|
|
|
187 |
heads = item["heads"]
|
188 |
size = item["size"]
|
189 |
attn_map = item["attn_map"]
|
|
|
226 |
|
227 |
for item in attn_map_cache:
|
228 |
|
|
|
|
|
|
|
229 |
heads = item["heads"]
|
230 |
size = item["size"]
|
231 |
attn_map = item["attn_map"]
|
|
|
234 |
|
235 |
seg_l = seg_mask.shape[1]
|
236 |
|
237 |
+
bh, n, l = attn_map.shape # bh: batch size * heads / n : pixel length(h*w) / l: token length
|
238 |
attn_map = attn_map.reshape((-1, heads, n, l)) # b, h, n, l
|
239 |
|
240 |
assert seg_l <= l
|
|
|
265 |
|
266 |
loss = loss / count
|
267 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
return loss
|
sgm/modules/diffusionmodules/openaimodel.py
CHANGED
@@ -1,4 +1,7 @@
|
|
|
|
|
|
1 |
from abc import abstractmethod
|
|
|
2 |
from typing import Iterable
|
3 |
|
4 |
import numpy as np
|
@@ -10,6 +13,7 @@ from einops import rearrange
|
|
10 |
from ...modules.attention import SpatialTransformer
|
11 |
from ...modules.diffusionmodules.util import (
|
12 |
avg_pool_nd,
|
|
|
13 |
conv_nd,
|
14 |
linear,
|
15 |
normalization,
|
@@ -19,14 +23,47 @@ from ...modules.diffusionmodules.util import (
|
|
19 |
from ...util import default, exists
|
20 |
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
super().__init__()
|
25 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
def forward(self, t):
|
28 |
-
return timestep_embedding(t, self.dim)
|
29 |
-
|
30 |
|
31 |
class TimestepBlock(nn.Module):
|
32 |
"""
|
@@ -50,14 +87,19 @@ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
|
50 |
self,
|
51 |
x,
|
52 |
emb,
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
55 |
):
|
56 |
for layer in self:
|
57 |
if isinstance(layer, TimestepBlock):
|
58 |
x = layer(x, emb)
|
59 |
elif isinstance(layer, SpatialTransformer):
|
60 |
-
x = layer(x,
|
61 |
else:
|
62 |
x = layer(x)
|
63 |
return x
|
@@ -102,6 +144,22 @@ class Upsample(nn.Module):
|
|
102 |
return x
|
103 |
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
class Downsample(nn.Module):
|
106 |
"""
|
107 |
A downsampling layer with an optional convolution.
|
@@ -149,6 +207,17 @@ class Downsample(nn.Module):
|
|
149 |
class ResBlock(TimestepBlock):
|
150 |
"""
|
151 |
A residual block that can optionally change the number of channels.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
"""
|
153 |
|
154 |
def __init__(
|
@@ -160,11 +229,12 @@ class ResBlock(TimestepBlock):
|
|
160 |
use_conv=False,
|
161 |
use_scale_shift_norm=False,
|
162 |
dims=2,
|
|
|
163 |
up=False,
|
164 |
down=False,
|
165 |
kernel_size=3,
|
166 |
exchange_temb_dims=False,
|
167 |
-
skip_t_emb=False
|
168 |
):
|
169 |
super().__init__()
|
170 |
self.channels = channels
|
@@ -172,6 +242,7 @@ class ResBlock(TimestepBlock):
|
|
172 |
self.dropout = dropout
|
173 |
self.out_channels = out_channels or channels
|
174 |
self.use_conv = use_conv
|
|
|
175 |
self.use_scale_shift_norm = use_scale_shift_norm
|
176 |
self.exchange_temb_dims = exchange_temb_dims
|
177 |
|
@@ -240,6 +311,17 @@ class ResBlock(TimestepBlock):
|
|
240 |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
241 |
|
242 |
def forward(self, x, emb):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
if self.updown:
|
244 |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
245 |
h = in_rest(x)
|
@@ -267,42 +349,233 @@ class ResBlock(TimestepBlock):
|
|
267 |
h = self.out_layers(h)
|
268 |
return self.skip_connection(x) + h
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
|
275 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
def __init__(
|
278 |
self,
|
279 |
in_channels,
|
280 |
-
ctrl_channels,
|
281 |
model_channels,
|
282 |
out_channels,
|
283 |
num_res_blocks,
|
284 |
attention_resolutions,
|
285 |
dropout=0,
|
286 |
channel_mult=(1, 2, 4, 8),
|
287 |
-
save_attn_type=None,
|
288 |
-
save_attn_layers=[],
|
289 |
conv_resample=True,
|
290 |
dims=2,
|
291 |
-
|
|
|
|
|
292 |
num_heads=-1,
|
293 |
num_head_channels=-1,
|
294 |
num_heads_upsample=-1,
|
295 |
use_scale_shift_norm=False,
|
296 |
resblock_updown=False,
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
|
|
|
|
|
|
300 |
num_attention_blocks=None,
|
|
|
301 |
use_linear_in_transformer=False,
|
|
|
302 |
adm_in_channels=None,
|
303 |
-
|
|
|
|
|
304 |
):
|
305 |
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
if num_heads_upsample == -1:
|
308 |
num_heads_upsample = num_heads
|
@@ -318,39 +591,106 @@ class UnifiedUNetModel(nn.Module):
|
|
318 |
), "Either num_heads or num_head_channels has to be set"
|
319 |
|
320 |
self.in_channels = in_channels
|
321 |
-
self.ctrl_channels = ctrl_channels
|
322 |
self.model_channels = model_channels
|
323 |
self.out_channels = out_channels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
self.attention_resolutions = attention_resolutions
|
331 |
self.dropout = dropout
|
332 |
self.channel_mult = channel_mult
|
333 |
self.conv_resample = conv_resample
|
334 |
-
self.
|
|
|
|
|
|
|
|
|
335 |
self.num_heads = num_heads
|
336 |
self.num_head_channels = num_head_channels
|
337 |
self.num_heads_upsample = num_heads_upsample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
time_embed_dim = model_channels * 4
|
340 |
-
self.time_embed =
|
341 |
-
|
342 |
-
|
343 |
-
|
|
|
|
|
344 |
)
|
345 |
-
|
346 |
-
if self.
|
347 |
-
self.
|
348 |
-
nn.
|
349 |
-
|
350 |
-
|
351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
)
|
353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
|
355 |
self.input_blocks = nn.ModuleList(
|
356 |
[
|
@@ -359,26 +699,6 @@ class UnifiedUNetModel(nn.Module):
|
|
359 |
)
|
360 |
]
|
361 |
)
|
362 |
-
|
363 |
-
if self.ctrl_channels > 0:
|
364 |
-
self.ctrl_block = TimestepEmbedSequential(
|
365 |
-
conv_nd(dims, ctrl_channels, 16, 3, padding=1),
|
366 |
-
nn.SiLU(),
|
367 |
-
conv_nd(dims, 16, 16, 3, padding=1),
|
368 |
-
nn.SiLU(),
|
369 |
-
conv_nd(dims, 16, 32, 3, padding=1),
|
370 |
-
nn.SiLU(),
|
371 |
-
conv_nd(dims, 32, 32, 3, padding=1),
|
372 |
-
nn.SiLU(),
|
373 |
-
conv_nd(dims, 32, 96, 3, padding=1),
|
374 |
-
nn.SiLU(),
|
375 |
-
conv_nd(dims, 96, 96, 3, padding=1),
|
376 |
-
nn.SiLU(),
|
377 |
-
conv_nd(dims, 96, 256, 3, padding=1),
|
378 |
-
nn.SiLU(),
|
379 |
-
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
|
380 |
-
)
|
381 |
-
|
382 |
self._feature_size = model_channels
|
383 |
input_block_chans = [model_channels]
|
384 |
ch = model_channels
|
@@ -386,13 +706,16 @@ class UnifiedUNetModel(nn.Module):
|
|
386 |
for level, mult in enumerate(channel_mult):
|
387 |
for nr in range(self.num_res_blocks[level]):
|
388 |
layers = [
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
|
|
|
|
|
|
396 |
)
|
397 |
]
|
398 |
ch = mult * model_channels
|
@@ -402,19 +725,45 @@ class UnifiedUNetModel(nn.Module):
|
|
402 |
else:
|
403 |
num_heads = ch // num_head_channels
|
404 |
dim_head = num_head_channels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
if (
|
406 |
not exists(num_attention_blocks)
|
407 |
or nr < num_attention_blocks[level]
|
408 |
):
|
409 |
layers.append(
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
)
|
419 |
)
|
420 |
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
@@ -424,14 +773,17 @@ class UnifiedUNetModel(nn.Module):
|
|
424 |
out_ch = ch
|
425 |
self.input_blocks.append(
|
426 |
TimestepEmbedSequential(
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
|
|
|
|
|
|
435 |
)
|
436 |
if resblock_updown
|
437 |
else Downsample(
|
@@ -449,33 +801,54 @@ class UnifiedUNetModel(nn.Module):
|
|
449 |
else:
|
450 |
num_heads = ch // num_head_channels
|
451 |
dim_head = num_head_channels
|
452 |
-
|
|
|
|
|
453 |
self.middle_block = TimestepEmbedSequential(
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
num_heads,
|
464 |
-
dim_head,
|
465 |
-
depth=transformer_depth_middle,
|
466 |
-
t_context_dim=t_context_dim,
|
467 |
-
v_context_dim=v_context_dim,
|
468 |
-
use_linear=use_linear_in_transformer
|
469 |
),
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
|
|
|
|
476 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
477 |
)
|
478 |
-
|
479 |
self._feature_size += ch
|
480 |
|
481 |
self.output_blocks = nn.ModuleList([])
|
@@ -483,13 +856,16 @@ class UnifiedUNetModel(nn.Module):
|
|
483 |
for i in range(self.num_res_blocks[level] + 1):
|
484 |
ich = input_block_chans.pop()
|
485 |
layers = [
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
|
|
|
|
|
|
493 |
)
|
494 |
]
|
495 |
ch = model_channels * mult
|
@@ -499,32 +875,61 @@ class UnifiedUNetModel(nn.Module):
|
|
499 |
else:
|
500 |
num_heads = ch // num_head_channels
|
501 |
dim_head = num_head_channels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
502 |
if (
|
503 |
not exists(num_attention_blocks)
|
504 |
or i < num_attention_blocks[level]
|
505 |
):
|
506 |
layers.append(
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
515 |
)
|
516 |
)
|
517 |
if level and i == self.num_res_blocks[level]:
|
518 |
out_ch = ch
|
519 |
layers.append(
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
|
|
|
|
|
|
528 |
)
|
529 |
if resblock_updown
|
530 |
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
@@ -533,92 +938,1133 @@ class UnifiedUNetModel(nn.Module):
|
|
533 |
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
534 |
self._feature_size += ch
|
535 |
|
536 |
-
self.out =
|
537 |
-
|
538 |
-
|
539 |
-
|
|
|
|
|
540 |
)
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
self.attn_map_cache.append(item)
|
550 |
-
module.attn_map_cache = item
|
551 |
-
|
552 |
-
def clear_attn_map(self):
|
553 |
-
|
554 |
-
for item in self.attn_map_cache:
|
555 |
-
if item["attn_map"] is not None:
|
556 |
-
del item["attn_map"]
|
557 |
-
item["attn_map"] = None
|
558 |
-
|
559 |
-
def save_attn_map(self, attn_type="t_attn", save_name="temp", tokens=""):
|
560 |
-
|
561 |
-
attn_maps = []
|
562 |
-
for item in self.attn_map_cache:
|
563 |
-
name = item["name"]
|
564 |
-
if any([name.startswith(block) for block in self.attn_layers]) and name.endswith(attn_type):
|
565 |
-
heads = item["heads"]
|
566 |
-
attn_maps.append(item["attn_map"].detach().cpu())
|
567 |
-
|
568 |
-
attn_map = th.stack(attn_maps, dim=0)
|
569 |
-
attn_map = th.mean(attn_map, dim=0)
|
570 |
-
|
571 |
-
# attn_map: bh * n * l
|
572 |
-
bh, n, l = attn_map.shape # bh: batch size * heads / n : pixel length(h*w) / l: token length
|
573 |
-
attn_map = attn_map.reshape((-1,heads,n,l)).mean(dim=1)
|
574 |
-
b = attn_map.shape[0]
|
575 |
-
|
576 |
-
h = w = int(n**0.5)
|
577 |
-
attn_map = attn_map.permute(0,2,1).reshape((b,l,h,w)).numpy()
|
578 |
-
attn_map_i = attn_map[-1]
|
579 |
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
ax.set_title(tokens[j])
|
588 |
-
fig.savefig(f"temp/attn_map/attn_map_{save_name}.png")
|
589 |
-
plt.close()
|
590 |
|
591 |
-
|
592 |
-
|
593 |
-
|
|
|
|
|
|
|
|
|
594 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
595 |
assert (y is not None) == (
|
596 |
-
self.
|
597 |
), "must specify y if and only if the model is class-conditional"
|
598 |
-
|
599 |
-
self.clear_attn_map()
|
600 |
-
|
601 |
hs = []
|
602 |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
603 |
emb = self.time_embed(t_emb)
|
604 |
|
605 |
-
if self.
|
606 |
assert y.shape[0] == x.shape[0]
|
607 |
emb = emb + self.label_emb(y)
|
608 |
|
|
|
609 |
h = x
|
610 |
-
|
611 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
612 |
for i, module in enumerate(self.input_blocks):
|
613 |
if self.ctrl_channels > 0 and i == 0:
|
614 |
-
h = module(in_h, emb,
|
615 |
else:
|
616 |
-
h = module(h, emb,
|
617 |
hs.append(h)
|
618 |
-
h = self.middle_block(h, emb,
|
619 |
for i, module in enumerate(self.output_blocks):
|
620 |
h = th.cat([h, hs.pop()], dim=1)
|
621 |
-
h = module(h, emb,
|
622 |
h = h.type(x.dtype)
|
623 |
|
624 |
return self.out(h)
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
from abc import abstractmethod
|
4 |
+
from functools import partial
|
5 |
from typing import Iterable
|
6 |
|
7 |
import numpy as np
|
|
|
13 |
from ...modules.attention import SpatialTransformer
|
14 |
from ...modules.diffusionmodules.util import (
|
15 |
avg_pool_nd,
|
16 |
+
checkpoint,
|
17 |
conv_nd,
|
18 |
linear,
|
19 |
normalization,
|
|
|
23 |
from ...util import default, exists
|
24 |
|
25 |
|
26 |
+
# dummy replace
|
27 |
+
def convert_module_to_f16(x):
|
28 |
+
pass
|
29 |
+
|
30 |
+
|
31 |
+
def convert_module_to_f32(x):
|
32 |
+
pass
|
33 |
+
|
34 |
+
|
35 |
+
## go
|
36 |
+
class AttentionPool2d(nn.Module):
|
37 |
+
"""
|
38 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
spacial_dim: int,
|
44 |
+
embed_dim: int,
|
45 |
+
num_heads_channels: int,
|
46 |
+
output_dim: int = None,
|
47 |
+
):
|
48 |
super().__init__()
|
49 |
+
self.positional_embedding = nn.Parameter(
|
50 |
+
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5
|
51 |
+
)
|
52 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
53 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
54 |
+
self.num_heads = embed_dim // num_heads_channels
|
55 |
+
self.attention = QKVAttention(self.num_heads)
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
b, c, *_spatial = x.shape
|
59 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
60 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
61 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
62 |
+
x = self.qkv_proj(x)
|
63 |
+
x = self.attention(x)
|
64 |
+
x = self.c_proj(x)
|
65 |
+
return x[:, :, 0]
|
66 |
|
|
|
|
|
|
|
67 |
|
68 |
class TimestepBlock(nn.Module):
|
69 |
"""
|
|
|
87 |
self,
|
88 |
x,
|
89 |
emb,
|
90 |
+
context=None,
|
91 |
+
add_context=None,
|
92 |
+
skip_time_mix=False,
|
93 |
+
time_context=None,
|
94 |
+
num_video_frames=None,
|
95 |
+
time_context_cat=None,
|
96 |
+
use_crossframe_attention_in_spatial_layers=False,
|
97 |
):
|
98 |
for layer in self:
|
99 |
if isinstance(layer, TimestepBlock):
|
100 |
x = layer(x, emb)
|
101 |
elif isinstance(layer, SpatialTransformer):
|
102 |
+
x = layer(x, context, add_context)
|
103 |
else:
|
104 |
x = layer(x)
|
105 |
return x
|
|
|
144 |
return x
|
145 |
|
146 |
|
147 |
+
class TransposedUpsample(nn.Module):
|
148 |
+
"Learned 2x upsampling without padding"
|
149 |
+
|
150 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
151 |
+
super().__init__()
|
152 |
+
self.channels = channels
|
153 |
+
self.out_channels = out_channels or channels
|
154 |
+
|
155 |
+
self.up = nn.ConvTranspose2d(
|
156 |
+
self.channels, self.out_channels, kernel_size=ks, stride=2
|
157 |
+
)
|
158 |
+
|
159 |
+
def forward(self, x):
|
160 |
+
return self.up(x)
|
161 |
+
|
162 |
+
|
163 |
class Downsample(nn.Module):
|
164 |
"""
|
165 |
A downsampling layer with an optional convolution.
|
|
|
207 |
class ResBlock(TimestepBlock):
|
208 |
"""
|
209 |
A residual block that can optionally change the number of channels.
|
210 |
+
:param channels: the number of input channels.
|
211 |
+
:param emb_channels: the number of timestep embedding channels.
|
212 |
+
:param dropout: the rate of dropout.
|
213 |
+
:param out_channels: if specified, the number of out channels.
|
214 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
215 |
+
convolution instead of a smaller 1x1 convolution to change the
|
216 |
+
channels in the skip connection.
|
217 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
218 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
219 |
+
:param up: if True, use this block for upsampling.
|
220 |
+
:param down: if True, use this block for downsampling.
|
221 |
"""
|
222 |
|
223 |
def __init__(
|
|
|
229 |
use_conv=False,
|
230 |
use_scale_shift_norm=False,
|
231 |
dims=2,
|
232 |
+
use_checkpoint=False,
|
233 |
up=False,
|
234 |
down=False,
|
235 |
kernel_size=3,
|
236 |
exchange_temb_dims=False,
|
237 |
+
skip_t_emb=False,
|
238 |
):
|
239 |
super().__init__()
|
240 |
self.channels = channels
|
|
|
242 |
self.dropout = dropout
|
243 |
self.out_channels = out_channels or channels
|
244 |
self.use_conv = use_conv
|
245 |
+
self.use_checkpoint = use_checkpoint
|
246 |
self.use_scale_shift_norm = use_scale_shift_norm
|
247 |
self.exchange_temb_dims = exchange_temb_dims
|
248 |
|
|
|
311 |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
312 |
|
313 |
def forward(self, x, emb):
|
314 |
+
"""
|
315 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
316 |
+
:param x: an [N x C x ...] Tensor of features.
|
317 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
318 |
+
:return: an [N x C x ...] Tensor of outputs.
|
319 |
+
"""
|
320 |
+
return checkpoint(
|
321 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
322 |
+
)
|
323 |
+
|
324 |
+
def _forward(self, x, emb):
|
325 |
if self.updown:
|
326 |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
327 |
h = in_rest(x)
|
|
|
349 |
h = self.out_layers(h)
|
350 |
return self.skip_connection(x) + h
|
351 |
|
352 |
+
|
353 |
+
class AttentionBlock(nn.Module):
|
354 |
+
"""
|
355 |
+
An attention block that allows spatial positions to attend to each other.
|
356 |
+
Originally ported from here, but adapted to the N-d case.
|
357 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
358 |
+
"""
|
359 |
+
|
360 |
+
def __init__(
|
361 |
+
self,
|
362 |
+
channels,
|
363 |
+
num_heads=1,
|
364 |
+
num_head_channels=-1,
|
365 |
+
use_checkpoint=False,
|
366 |
+
use_new_attention_order=False,
|
367 |
+
):
|
368 |
+
super().__init__()
|
369 |
+
self.channels = channels
|
370 |
+
if num_head_channels == -1:
|
371 |
+
self.num_heads = num_heads
|
372 |
+
else:
|
373 |
+
assert (
|
374 |
+
channels % num_head_channels == 0
|
375 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
376 |
+
self.num_heads = channels // num_head_channels
|
377 |
+
self.use_checkpoint = use_checkpoint
|
378 |
+
self.norm = normalization(channels)
|
379 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
380 |
+
if use_new_attention_order:
|
381 |
+
# split qkv before split heads
|
382 |
+
self.attention = QKVAttention(self.num_heads)
|
383 |
+
else:
|
384 |
+
# split heads before split qkv
|
385 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
386 |
+
|
387 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
388 |
+
|
389 |
+
def forward(self, x, **kwargs):
|
390 |
+
# TODO add crossframe attention and use mixed checkpoint
|
391 |
+
return checkpoint(
|
392 |
+
self._forward, (x,), self.parameters(), True
|
393 |
+
) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
394 |
+
# return pt_checkpoint(self._forward, x) # pytorch
|
395 |
+
|
396 |
+
def _forward(self, x):
|
397 |
+
b, c, *spatial = x.shape
|
398 |
+
x = x.reshape(b, c, -1)
|
399 |
+
qkv = self.qkv(self.norm(x))
|
400 |
+
h = self.attention(qkv)
|
401 |
+
h = self.proj_out(h)
|
402 |
+
return (x + h).reshape(b, c, *spatial)
|
403 |
+
|
404 |
+
|
405 |
+
def count_flops_attn(model, _x, y):
|
406 |
+
"""
|
407 |
+
A counter for the `thop` package to count the operations in an
|
408 |
+
attention operation.
|
409 |
+
Meant to be used like:
|
410 |
+
macs, params = thop.profile(
|
411 |
+
model,
|
412 |
+
inputs=(inputs, timestamps),
|
413 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
414 |
+
)
|
415 |
+
"""
|
416 |
+
b, c, *spatial = y[0].shape
|
417 |
+
num_spatial = int(np.prod(spatial))
|
418 |
+
# We perform two matmuls with the same number of ops.
|
419 |
+
# The first computes the weight matrix, the second computes
|
420 |
+
# the combination of the value vectors.
|
421 |
+
matmul_ops = 2 * b * (num_spatial**2) * c
|
422 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
423 |
+
|
424 |
+
|
425 |
+
class QKVAttentionLegacy(nn.Module):
|
426 |
+
"""
|
427 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
428 |
+
"""
|
429 |
+
|
430 |
+
def __init__(self, n_heads):
|
431 |
+
super().__init__()
|
432 |
+
self.n_heads = n_heads
|
433 |
+
|
434 |
+
def forward(self, qkv):
|
435 |
+
"""
|
436 |
+
Apply QKV attention.
|
437 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
438 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
439 |
+
"""
|
440 |
+
bs, width, length = qkv.shape
|
441 |
+
assert width % (3 * self.n_heads) == 0
|
442 |
+
ch = width // (3 * self.n_heads)
|
443 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
444 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
445 |
+
weight = th.einsum(
|
446 |
+
"bct,bcs->bts", q * scale, k * scale
|
447 |
+
) # More stable with f16 than dividing afterwards
|
448 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
449 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
450 |
+
return a.reshape(bs, -1, length)
|
451 |
+
|
452 |
+
@staticmethod
|
453 |
+
def count_flops(model, _x, y):
|
454 |
+
return count_flops_attn(model, _x, y)
|
455 |
+
|
456 |
+
|
457 |
+
class QKVAttention(nn.Module):
|
458 |
+
"""
|
459 |
+
A module which performs QKV attention and splits in a different order.
|
460 |
+
"""
|
461 |
+
|
462 |
+
def __init__(self, n_heads):
|
463 |
+
super().__init__()
|
464 |
+
self.n_heads = n_heads
|
465 |
+
|
466 |
+
def forward(self, qkv):
|
467 |
+
"""
|
468 |
+
Apply QKV attention.
|
469 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
470 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
471 |
+
"""
|
472 |
+
bs, width, length = qkv.shape
|
473 |
+
assert width % (3 * self.n_heads) == 0
|
474 |
+
ch = width // (3 * self.n_heads)
|
475 |
+
q, k, v = qkv.chunk(3, dim=1)
|
476 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
477 |
+
weight = th.einsum(
|
478 |
+
"bct,bcs->bts",
|
479 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
480 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
481 |
+
) # More stable with f16 than dividing afterwards
|
482 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
483 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
484 |
+
return a.reshape(bs, -1, length)
|
485 |
+
|
486 |
+
@staticmethod
|
487 |
+
def count_flops(model, _x, y):
|
488 |
+
return count_flops_attn(model, _x, y)
|
489 |
+
|
490 |
+
|
491 |
+
class Timestep(nn.Module):
|
492 |
+
def __init__(self, dim):
|
493 |
+
super().__init__()
|
494 |
+
self.dim = dim
|
495 |
+
|
496 |
+
def forward(self, t):
|
497 |
+
return timestep_embedding(t, self.dim)
|
498 |
|
499 |
|
500 |
+
class UNetModel(nn.Module):
|
501 |
+
"""
|
502 |
+
The full UNet model with attention and timestep embedding.
|
503 |
+
:param in_channels: channels in the input Tensor.
|
504 |
+
:param model_channels: base channel count for the model.
|
505 |
+
:param out_channels: channels in the output Tensor.
|
506 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
507 |
+
:param attention_resolutions: a collection of downsample rates at which
|
508 |
+
attention will take place. May be a set, list, or tuple.
|
509 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
510 |
+
will be used.
|
511 |
+
:param dropout: the dropout probability.
|
512 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
513 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
514 |
+
downsampling.
|
515 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
516 |
+
:param num_classes: if specified (as an int), then this model will be
|
517 |
+
class-conditional with `num_classes` classes.
|
518 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
519 |
+
:param num_heads: the number of attention heads in each attention layer.
|
520 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
521 |
+
a fixed channel width per attention head.
|
522 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
523 |
+
of heads for upsampling. Deprecated.
|
524 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
525 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
526 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
527 |
+
increased efficiency.
|
528 |
+
"""
|
529 |
|
530 |
def __init__(
|
531 |
self,
|
532 |
in_channels,
|
|
|
533 |
model_channels,
|
534 |
out_channels,
|
535 |
num_res_blocks,
|
536 |
attention_resolutions,
|
537 |
dropout=0,
|
538 |
channel_mult=(1, 2, 4, 8),
|
|
|
|
|
539 |
conv_resample=True,
|
540 |
dims=2,
|
541 |
+
num_classes=None,
|
542 |
+
use_checkpoint=False,
|
543 |
+
use_fp16=False,
|
544 |
num_heads=-1,
|
545 |
num_head_channels=-1,
|
546 |
num_heads_upsample=-1,
|
547 |
use_scale_shift_norm=False,
|
548 |
resblock_updown=False,
|
549 |
+
use_new_attention_order=False,
|
550 |
+
use_spatial_transformer=False, # custom transformer support
|
551 |
+
transformer_depth=1, # custom transformer support
|
552 |
+
context_dim=None, # custom transformer support
|
553 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
554 |
+
legacy=True,
|
555 |
+
disable_self_attentions=None,
|
556 |
num_attention_blocks=None,
|
557 |
+
disable_middle_self_attn=False,
|
558 |
use_linear_in_transformer=False,
|
559 |
+
spatial_transformer_attn_type="softmax",
|
560 |
adm_in_channels=None,
|
561 |
+
use_fairscale_checkpoint=False,
|
562 |
+
offload_to_cpu=False,
|
563 |
+
transformer_depth_middle=None,
|
564 |
):
|
565 |
super().__init__()
|
566 |
+
from omegaconf.listconfig import ListConfig
|
567 |
+
|
568 |
+
if use_spatial_transformer:
|
569 |
+
assert (
|
570 |
+
context_dim is not None
|
571 |
+
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
572 |
+
|
573 |
+
if context_dim is not None:
|
574 |
+
assert (
|
575 |
+
use_spatial_transformer
|
576 |
+
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
577 |
+
if type(context_dim) == ListConfig:
|
578 |
+
context_dim = list(context_dim)
|
579 |
|
580 |
if num_heads_upsample == -1:
|
581 |
num_heads_upsample = num_heads
|
|
|
591 |
), "Either num_heads or num_head_channels has to be set"
|
592 |
|
593 |
self.in_channels = in_channels
|
|
|
594 |
self.model_channels = model_channels
|
595 |
self.out_channels = out_channels
|
596 |
+
if isinstance(transformer_depth, int):
|
597 |
+
transformer_depth = len(channel_mult) * [transformer_depth]
|
598 |
+
elif isinstance(transformer_depth, ListConfig):
|
599 |
+
transformer_depth = list(transformer_depth)
|
600 |
+
transformer_depth_middle = default(
|
601 |
+
transformer_depth_middle, transformer_depth[-1]
|
602 |
+
)
|
603 |
|
604 |
+
if isinstance(num_res_blocks, int):
|
605 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
606 |
+
else:
|
607 |
+
if len(num_res_blocks) != len(channel_mult):
|
608 |
+
raise ValueError(
|
609 |
+
"provide num_res_blocks either as an int (globally constant) or "
|
610 |
+
"as a list/tuple (per-level) with the same length as channel_mult"
|
611 |
+
)
|
612 |
+
self.num_res_blocks = num_res_blocks
|
613 |
+
# self.num_res_blocks = num_res_blocks
|
614 |
+
if disable_self_attentions is not None:
|
615 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
616 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
617 |
+
if num_attention_blocks is not None:
|
618 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
619 |
+
assert all(
|
620 |
+
map(
|
621 |
+
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
622 |
+
range(len(num_attention_blocks)),
|
623 |
+
)
|
624 |
+
)
|
625 |
+
print(
|
626 |
+
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
627 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
628 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
629 |
+
f"attention will still not be set."
|
630 |
+
) # todo: convert to warning
|
631 |
|
632 |
self.attention_resolutions = attention_resolutions
|
633 |
self.dropout = dropout
|
634 |
self.channel_mult = channel_mult
|
635 |
self.conv_resample = conv_resample
|
636 |
+
self.num_classes = num_classes
|
637 |
+
self.use_checkpoint = use_checkpoint
|
638 |
+
if use_fp16:
|
639 |
+
print("WARNING: use_fp16 was dropped and has no effect anymore.")
|
640 |
+
# self.dtype = th.float16 if use_fp16 else th.float32
|
641 |
self.num_heads = num_heads
|
642 |
self.num_head_channels = num_head_channels
|
643 |
self.num_heads_upsample = num_heads_upsample
|
644 |
+
self.predict_codebook_ids = n_embed is not None
|
645 |
+
|
646 |
+
assert use_fairscale_checkpoint != use_checkpoint or not (
|
647 |
+
use_checkpoint or use_fairscale_checkpoint
|
648 |
+
)
|
649 |
+
|
650 |
+
self.use_fairscale_checkpoint = False
|
651 |
+
checkpoint_wrapper_fn = (
|
652 |
+
partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu)
|
653 |
+
if self.use_fairscale_checkpoint
|
654 |
+
else lambda x: x
|
655 |
+
)
|
656 |
|
657 |
time_embed_dim = model_channels * 4
|
658 |
+
self.time_embed = checkpoint_wrapper_fn(
|
659 |
+
nn.Sequential(
|
660 |
+
linear(model_channels, time_embed_dim),
|
661 |
+
nn.SiLU(),
|
662 |
+
linear(time_embed_dim, time_embed_dim),
|
663 |
+
)
|
664 |
)
|
665 |
+
|
666 |
+
if self.num_classes is not None:
|
667 |
+
if isinstance(self.num_classes, int):
|
668 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
669 |
+
elif self.num_classes == "continuous":
|
670 |
+
print("setting up linear c_adm embedding layer")
|
671 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
672 |
+
elif self.num_classes == "timestep":
|
673 |
+
self.label_emb = checkpoint_wrapper_fn(
|
674 |
+
nn.Sequential(
|
675 |
+
Timestep(model_channels),
|
676 |
+
nn.Sequential(
|
677 |
+
linear(model_channels, time_embed_dim),
|
678 |
+
nn.SiLU(),
|
679 |
+
linear(time_embed_dim, time_embed_dim),
|
680 |
+
),
|
681 |
+
)
|
682 |
)
|
683 |
+
elif self.num_classes == "sequential":
|
684 |
+
assert adm_in_channels is not None
|
685 |
+
self.label_emb = nn.Sequential(
|
686 |
+
nn.Sequential(
|
687 |
+
linear(adm_in_channels, time_embed_dim),
|
688 |
+
nn.SiLU(),
|
689 |
+
linear(time_embed_dim, time_embed_dim),
|
690 |
+
)
|
691 |
+
)
|
692 |
+
else:
|
693 |
+
raise ValueError()
|
694 |
|
695 |
self.input_blocks = nn.ModuleList(
|
696 |
[
|
|
|
699 |
)
|
700 |
]
|
701 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
702 |
self._feature_size = model_channels
|
703 |
input_block_chans = [model_channels]
|
704 |
ch = model_channels
|
|
|
706 |
for level, mult in enumerate(channel_mult):
|
707 |
for nr in range(self.num_res_blocks[level]):
|
708 |
layers = [
|
709 |
+
checkpoint_wrapper_fn(
|
710 |
+
ResBlock(
|
711 |
+
ch,
|
712 |
+
time_embed_dim,
|
713 |
+
dropout,
|
714 |
+
out_channels=mult * model_channels,
|
715 |
+
dims=dims,
|
716 |
+
use_checkpoint=use_checkpoint,
|
717 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
718 |
+
)
|
719 |
)
|
720 |
]
|
721 |
ch = mult * model_channels
|
|
|
725 |
else:
|
726 |
num_heads = ch // num_head_channels
|
727 |
dim_head = num_head_channels
|
728 |
+
if legacy:
|
729 |
+
# num_heads = 1
|
730 |
+
dim_head = (
|
731 |
+
ch // num_heads
|
732 |
+
if use_spatial_transformer
|
733 |
+
else num_head_channels
|
734 |
+
)
|
735 |
+
if exists(disable_self_attentions):
|
736 |
+
disabled_sa = disable_self_attentions[level]
|
737 |
+
else:
|
738 |
+
disabled_sa = False
|
739 |
+
|
740 |
if (
|
741 |
not exists(num_attention_blocks)
|
742 |
or nr < num_attention_blocks[level]
|
743 |
):
|
744 |
layers.append(
|
745 |
+
checkpoint_wrapper_fn(
|
746 |
+
AttentionBlock(
|
747 |
+
ch,
|
748 |
+
use_checkpoint=use_checkpoint,
|
749 |
+
num_heads=num_heads,
|
750 |
+
num_head_channels=dim_head,
|
751 |
+
use_new_attention_order=use_new_attention_order,
|
752 |
+
)
|
753 |
+
)
|
754 |
+
if not use_spatial_transformer
|
755 |
+
else checkpoint_wrapper_fn(
|
756 |
+
SpatialTransformer(
|
757 |
+
ch,
|
758 |
+
num_heads,
|
759 |
+
dim_head,
|
760 |
+
depth=transformer_depth[level],
|
761 |
+
context_dim=context_dim,
|
762 |
+
disable_self_attn=disabled_sa,
|
763 |
+
use_linear=use_linear_in_transformer,
|
764 |
+
attn_type=spatial_transformer_attn_type,
|
765 |
+
use_checkpoint=use_checkpoint,
|
766 |
+
)
|
767 |
)
|
768 |
)
|
769 |
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
|
|
773 |
out_ch = ch
|
774 |
self.input_blocks.append(
|
775 |
TimestepEmbedSequential(
|
776 |
+
checkpoint_wrapper_fn(
|
777 |
+
ResBlock(
|
778 |
+
ch,
|
779 |
+
time_embed_dim,
|
780 |
+
dropout,
|
781 |
+
out_channels=out_ch,
|
782 |
+
dims=dims,
|
783 |
+
use_checkpoint=use_checkpoint,
|
784 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
785 |
+
down=True,
|
786 |
+
)
|
787 |
)
|
788 |
if resblock_updown
|
789 |
else Downsample(
|
|
|
801 |
else:
|
802 |
num_heads = ch // num_head_channels
|
803 |
dim_head = num_head_channels
|
804 |
+
if legacy:
|
805 |
+
# num_heads = 1
|
806 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
807 |
self.middle_block = TimestepEmbedSequential(
|
808 |
+
checkpoint_wrapper_fn(
|
809 |
+
ResBlock(
|
810 |
+
ch,
|
811 |
+
time_embed_dim,
|
812 |
+
dropout,
|
813 |
+
dims=dims,
|
814 |
+
use_checkpoint=use_checkpoint,
|
815 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
816 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
817 |
),
|
818 |
+
checkpoint_wrapper_fn(
|
819 |
+
AttentionBlock(
|
820 |
+
ch,
|
821 |
+
use_checkpoint=use_checkpoint,
|
822 |
+
num_heads=num_heads,
|
823 |
+
num_head_channels=dim_head,
|
824 |
+
use_new_attention_order=use_new_attention_order,
|
825 |
+
)
|
826 |
)
|
827 |
+
if not use_spatial_transformer
|
828 |
+
else checkpoint_wrapper_fn(
|
829 |
+
SpatialTransformer( # always uses a self-attn
|
830 |
+
ch,
|
831 |
+
num_heads,
|
832 |
+
dim_head,
|
833 |
+
depth=transformer_depth_middle,
|
834 |
+
context_dim=context_dim,
|
835 |
+
disable_self_attn=disable_middle_self_attn,
|
836 |
+
use_linear=use_linear_in_transformer,
|
837 |
+
attn_type=spatial_transformer_attn_type,
|
838 |
+
use_checkpoint=use_checkpoint,
|
839 |
+
)
|
840 |
+
),
|
841 |
+
checkpoint_wrapper_fn(
|
842 |
+
ResBlock(
|
843 |
+
ch,
|
844 |
+
time_embed_dim,
|
845 |
+
dropout,
|
846 |
+
dims=dims,
|
847 |
+
use_checkpoint=use_checkpoint,
|
848 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
849 |
+
)
|
850 |
+
),
|
851 |
)
|
|
|
852 |
self._feature_size += ch
|
853 |
|
854 |
self.output_blocks = nn.ModuleList([])
|
|
|
856 |
for i in range(self.num_res_blocks[level] + 1):
|
857 |
ich = input_block_chans.pop()
|
858 |
layers = [
|
859 |
+
checkpoint_wrapper_fn(
|
860 |
+
ResBlock(
|
861 |
+
ch + ich,
|
862 |
+
time_embed_dim,
|
863 |
+
dropout,
|
864 |
+
out_channels=model_channels * mult,
|
865 |
+
dims=dims,
|
866 |
+
use_checkpoint=use_checkpoint,
|
867 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
868 |
+
)
|
869 |
)
|
870 |
]
|
871 |
ch = model_channels * mult
|
|
|
875 |
else:
|
876 |
num_heads = ch // num_head_channels
|
877 |
dim_head = num_head_channels
|
878 |
+
if legacy:
|
879 |
+
# num_heads = 1
|
880 |
+
dim_head = (
|
881 |
+
ch // num_heads
|
882 |
+
if use_spatial_transformer
|
883 |
+
else num_head_channels
|
884 |
+
)
|
885 |
+
if exists(disable_self_attentions):
|
886 |
+
disabled_sa = disable_self_attentions[level]
|
887 |
+
else:
|
888 |
+
disabled_sa = False
|
889 |
+
|
890 |
if (
|
891 |
not exists(num_attention_blocks)
|
892 |
or i < num_attention_blocks[level]
|
893 |
):
|
894 |
layers.append(
|
895 |
+
checkpoint_wrapper_fn(
|
896 |
+
AttentionBlock(
|
897 |
+
ch,
|
898 |
+
use_checkpoint=use_checkpoint,
|
899 |
+
num_heads=num_heads_upsample,
|
900 |
+
num_head_channels=dim_head,
|
901 |
+
use_new_attention_order=use_new_attention_order,
|
902 |
+
)
|
903 |
+
)
|
904 |
+
if not use_spatial_transformer
|
905 |
+
else checkpoint_wrapper_fn(
|
906 |
+
SpatialTransformer(
|
907 |
+
ch,
|
908 |
+
num_heads,
|
909 |
+
dim_head,
|
910 |
+
depth=transformer_depth[level],
|
911 |
+
context_dim=context_dim,
|
912 |
+
disable_self_attn=disabled_sa,
|
913 |
+
use_linear=use_linear_in_transformer,
|
914 |
+
attn_type=spatial_transformer_attn_type,
|
915 |
+
use_checkpoint=use_checkpoint,
|
916 |
+
)
|
917 |
)
|
918 |
)
|
919 |
if level and i == self.num_res_blocks[level]:
|
920 |
out_ch = ch
|
921 |
layers.append(
|
922 |
+
checkpoint_wrapper_fn(
|
923 |
+
ResBlock(
|
924 |
+
ch,
|
925 |
+
time_embed_dim,
|
926 |
+
dropout,
|
927 |
+
out_channels=out_ch,
|
928 |
+
dims=dims,
|
929 |
+
use_checkpoint=use_checkpoint,
|
930 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
931 |
+
up=True,
|
932 |
+
)
|
933 |
)
|
934 |
if resblock_updown
|
935 |
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
|
|
938 |
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
939 |
self._feature_size += ch
|
940 |
|
941 |
+
self.out = checkpoint_wrapper_fn(
|
942 |
+
nn.Sequential(
|
943 |
+
normalization(ch),
|
944 |
+
nn.SiLU(),
|
945 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
946 |
+
)
|
947 |
)
|
948 |
+
if self.predict_codebook_ids:
|
949 |
+
self.id_predictor = checkpoint_wrapper_fn(
|
950 |
+
nn.Sequential(
|
951 |
+
normalization(ch),
|
952 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
953 |
+
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
954 |
+
)
|
955 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
956 |
|
957 |
+
def convert_to_fp16(self):
|
958 |
+
"""
|
959 |
+
Convert the torso of the model to float16.
|
960 |
+
"""
|
961 |
+
self.input_blocks.apply(convert_module_to_f16)
|
962 |
+
self.middle_block.apply(convert_module_to_f16)
|
963 |
+
self.output_blocks.apply(convert_module_to_f16)
|
|
|
|
|
|
|
964 |
|
965 |
+
def convert_to_fp32(self):
|
966 |
+
"""
|
967 |
+
Convert the torso of the model to float32.
|
968 |
+
"""
|
969 |
+
self.input_blocks.apply(convert_module_to_f32)
|
970 |
+
self.middle_block.apply(convert_module_to_f32)
|
971 |
+
self.output_blocks.apply(convert_module_to_f32)
|
972 |
|
973 |
+
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
|
974 |
+
"""
|
975 |
+
Apply the model to an input batch.
|
976 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
977 |
+
:param timesteps: a 1-D batch of timesteps.
|
978 |
+
:param context: conditioning plugged in via crossattn
|
979 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
980 |
+
:return: an [N x C x ...] Tensor of outputs.
|
981 |
+
"""
|
982 |
assert (y is not None) == (
|
983 |
+
self.num_classes is not None
|
984 |
), "must specify y if and only if the model is class-conditional"
|
|
|
|
|
|
|
985 |
hs = []
|
986 |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
987 |
emb = self.time_embed(t_emb)
|
988 |
|
989 |
+
if self.num_classes is not None:
|
990 |
assert y.shape[0] == x.shape[0]
|
991 |
emb = emb + self.label_emb(y)
|
992 |
|
993 |
+
# h = x.type(self.dtype)
|
994 |
h = x
|
995 |
+
for i, module in enumerate(self.input_blocks):
|
996 |
+
h = module(h, emb, context)
|
997 |
+
hs.append(h)
|
998 |
+
h = self.middle_block(h, emb, context)
|
999 |
+
for i, module in enumerate(self.output_blocks):
|
1000 |
+
h = th.cat([h, hs.pop()], dim=1)
|
1001 |
+
h = module(h, emb, context)
|
1002 |
+
h = h.type(x.dtype)
|
1003 |
+
if self.predict_codebook_ids:
|
1004 |
+
assert False, "not supported anymore. what the f*** are you doing?"
|
1005 |
+
else:
|
1006 |
+
return self.out(h)
|
1007 |
+
|
1008 |
+
|
1009 |
+
|
1010 |
+
class UNetModel(nn.Module):
|
1011 |
+
"""
|
1012 |
+
The full UNet model with attention and timestep embedding.
|
1013 |
+
:param in_channels: channels in the input Tensor.
|
1014 |
+
:param model_channels: base channel count for the model.
|
1015 |
+
:param out_channels: channels in the output Tensor.
|
1016 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
1017 |
+
:param attention_resolutions: a collection of downsample rates at which
|
1018 |
+
attention will take place. May be a set, list, or tuple.
|
1019 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
1020 |
+
will be used.
|
1021 |
+
:param dropout: the dropout probability.
|
1022 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
1023 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
1024 |
+
downsampling.
|
1025 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
1026 |
+
:param num_classes: if specified (as an int), then this model will be
|
1027 |
+
class-conditional with `num_classes` classes.
|
1028 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
1029 |
+
:param num_heads: the number of attention heads in each attention layer.
|
1030 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
1031 |
+
a fixed channel width per attention head.
|
1032 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
1033 |
+
of heads for upsampling. Deprecated.
|
1034 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
1035 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
1036 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
1037 |
+
increased efficiency.
|
1038 |
+
"""
|
1039 |
+
|
1040 |
+
def __init__(
|
1041 |
+
self,
|
1042 |
+
in_channels,
|
1043 |
+
model_channels,
|
1044 |
+
out_channels,
|
1045 |
+
num_res_blocks,
|
1046 |
+
attention_resolutions,
|
1047 |
+
dropout=0,
|
1048 |
+
channel_mult=(1, 2, 4, 8),
|
1049 |
+
conv_resample=True,
|
1050 |
+
dims=2,
|
1051 |
+
num_classes=None,
|
1052 |
+
use_checkpoint=False,
|
1053 |
+
use_fp16=False,
|
1054 |
+
num_heads=-1,
|
1055 |
+
num_head_channels=-1,
|
1056 |
+
num_heads_upsample=-1,
|
1057 |
+
use_scale_shift_norm=False,
|
1058 |
+
resblock_updown=False,
|
1059 |
+
use_new_attention_order=False,
|
1060 |
+
use_spatial_transformer=False, # custom transformer support
|
1061 |
+
transformer_depth=1, # custom transformer support
|
1062 |
+
context_dim=None, # custom transformer support
|
1063 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
1064 |
+
legacy=True,
|
1065 |
+
disable_self_attentions=None,
|
1066 |
+
num_attention_blocks=None,
|
1067 |
+
disable_middle_self_attn=False,
|
1068 |
+
use_linear_in_transformer=False,
|
1069 |
+
spatial_transformer_attn_type="softmax",
|
1070 |
+
adm_in_channels=None,
|
1071 |
+
use_fairscale_checkpoint=False,
|
1072 |
+
offload_to_cpu=False,
|
1073 |
+
transformer_depth_middle=None,
|
1074 |
+
):
|
1075 |
+
super().__init__()
|
1076 |
+
from omegaconf.listconfig import ListConfig
|
1077 |
+
|
1078 |
+
if use_spatial_transformer:
|
1079 |
+
assert (
|
1080 |
+
context_dim is not None
|
1081 |
+
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
1082 |
+
|
1083 |
+
if context_dim is not None:
|
1084 |
+
assert (
|
1085 |
+
use_spatial_transformer
|
1086 |
+
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
1087 |
+
if type(context_dim) == ListConfig:
|
1088 |
+
context_dim = list(context_dim)
|
1089 |
+
|
1090 |
+
if num_heads_upsample == -1:
|
1091 |
+
num_heads_upsample = num_heads
|
1092 |
+
|
1093 |
+
if num_heads == -1:
|
1094 |
+
assert (
|
1095 |
+
num_head_channels != -1
|
1096 |
+
), "Either num_heads or num_head_channels has to be set"
|
1097 |
+
|
1098 |
+
if num_head_channels == -1:
|
1099 |
+
assert (
|
1100 |
+
num_heads != -1
|
1101 |
+
), "Either num_heads or num_head_channels has to be set"
|
1102 |
+
|
1103 |
+
self.in_channels = in_channels
|
1104 |
+
self.model_channels = model_channels
|
1105 |
+
self.out_channels = out_channels
|
1106 |
+
if isinstance(transformer_depth, int):
|
1107 |
+
transformer_depth = len(channel_mult) * [transformer_depth]
|
1108 |
+
elif isinstance(transformer_depth, ListConfig):
|
1109 |
+
transformer_depth = list(transformer_depth)
|
1110 |
+
transformer_depth_middle = default(
|
1111 |
+
transformer_depth_middle, transformer_depth[-1]
|
1112 |
+
)
|
1113 |
+
|
1114 |
+
if isinstance(num_res_blocks, int):
|
1115 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
1116 |
+
else:
|
1117 |
+
if len(num_res_blocks) != len(channel_mult):
|
1118 |
+
raise ValueError(
|
1119 |
+
"provide num_res_blocks either as an int (globally constant) or "
|
1120 |
+
"as a list/tuple (per-level) with the same length as channel_mult"
|
1121 |
+
)
|
1122 |
+
self.num_res_blocks = num_res_blocks
|
1123 |
+
# self.num_res_blocks = num_res_blocks
|
1124 |
+
if disable_self_attentions is not None:
|
1125 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
1126 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
1127 |
+
if num_attention_blocks is not None:
|
1128 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
1129 |
+
assert all(
|
1130 |
+
map(
|
1131 |
+
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
1132 |
+
range(len(num_attention_blocks)),
|
1133 |
+
)
|
1134 |
+
)
|
1135 |
+
print(
|
1136 |
+
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
1137 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
1138 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
1139 |
+
f"attention will still not be set."
|
1140 |
+
) # todo: convert to warning
|
1141 |
+
|
1142 |
+
self.attention_resolutions = attention_resolutions
|
1143 |
+
self.dropout = dropout
|
1144 |
+
self.channel_mult = channel_mult
|
1145 |
+
self.conv_resample = conv_resample
|
1146 |
+
self.num_classes = num_classes
|
1147 |
+
self.use_checkpoint = use_checkpoint
|
1148 |
+
if use_fp16:
|
1149 |
+
print("WARNING: use_fp16 was dropped and has no effect anymore.")
|
1150 |
+
# self.dtype = th.float16 if use_fp16 else th.float32
|
1151 |
+
self.num_heads = num_heads
|
1152 |
+
self.num_head_channels = num_head_channels
|
1153 |
+
self.num_heads_upsample = num_heads_upsample
|
1154 |
+
self.predict_codebook_ids = n_embed is not None
|
1155 |
+
|
1156 |
+
assert use_fairscale_checkpoint != use_checkpoint or not (
|
1157 |
+
use_checkpoint or use_fairscale_checkpoint
|
1158 |
+
)
|
1159 |
+
|
1160 |
+
self.use_fairscale_checkpoint = False
|
1161 |
+
checkpoint_wrapper_fn = (
|
1162 |
+
partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu)
|
1163 |
+
if self.use_fairscale_checkpoint
|
1164 |
+
else lambda x: x
|
1165 |
+
)
|
1166 |
+
|
1167 |
+
time_embed_dim = model_channels * 4
|
1168 |
+
self.time_embed = checkpoint_wrapper_fn(
|
1169 |
+
nn.Sequential(
|
1170 |
+
linear(model_channels, time_embed_dim),
|
1171 |
+
nn.SiLU(),
|
1172 |
+
linear(time_embed_dim, time_embed_dim),
|
1173 |
+
)
|
1174 |
+
)
|
1175 |
+
|
1176 |
+
if self.num_classes is not None:
|
1177 |
+
if isinstance(self.num_classes, int):
|
1178 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
1179 |
+
elif self.num_classes == "continuous":
|
1180 |
+
print("setting up linear c_adm embedding layer")
|
1181 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
1182 |
+
elif self.num_classes == "timestep":
|
1183 |
+
self.label_emb = checkpoint_wrapper_fn(
|
1184 |
+
nn.Sequential(
|
1185 |
+
Timestep(model_channels),
|
1186 |
+
nn.Sequential(
|
1187 |
+
linear(model_channels, time_embed_dim),
|
1188 |
+
nn.SiLU(),
|
1189 |
+
linear(time_embed_dim, time_embed_dim),
|
1190 |
+
),
|
1191 |
+
)
|
1192 |
+
)
|
1193 |
+
elif self.num_classes == "sequential":
|
1194 |
+
assert adm_in_channels is not None
|
1195 |
+
self.label_emb = nn.Sequential(
|
1196 |
+
nn.Sequential(
|
1197 |
+
linear(adm_in_channels, time_embed_dim),
|
1198 |
+
nn.SiLU(),
|
1199 |
+
linear(time_embed_dim, time_embed_dim),
|
1200 |
+
)
|
1201 |
+
)
|
1202 |
+
else:
|
1203 |
+
raise ValueError()
|
1204 |
+
|
1205 |
+
self.input_blocks = nn.ModuleList(
|
1206 |
+
[
|
1207 |
+
TimestepEmbedSequential(
|
1208 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
1209 |
+
)
|
1210 |
+
]
|
1211 |
+
)
|
1212 |
+
self._feature_size = model_channels
|
1213 |
+
input_block_chans = [model_channels]
|
1214 |
+
ch = model_channels
|
1215 |
+
ds = 1
|
1216 |
+
for level, mult in enumerate(channel_mult):
|
1217 |
+
for nr in range(self.num_res_blocks[level]):
|
1218 |
+
layers = [
|
1219 |
+
checkpoint_wrapper_fn(
|
1220 |
+
ResBlock(
|
1221 |
+
ch,
|
1222 |
+
time_embed_dim,
|
1223 |
+
dropout,
|
1224 |
+
out_channels=mult * model_channels,
|
1225 |
+
dims=dims,
|
1226 |
+
use_checkpoint=use_checkpoint,
|
1227 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1228 |
+
)
|
1229 |
+
)
|
1230 |
+
]
|
1231 |
+
ch = mult * model_channels
|
1232 |
+
if ds in attention_resolutions:
|
1233 |
+
if num_head_channels == -1:
|
1234 |
+
dim_head = ch // num_heads
|
1235 |
+
else:
|
1236 |
+
num_heads = ch // num_head_channels
|
1237 |
+
dim_head = num_head_channels
|
1238 |
+
if legacy:
|
1239 |
+
# num_heads = 1
|
1240 |
+
dim_head = (
|
1241 |
+
ch // num_heads
|
1242 |
+
if use_spatial_transformer
|
1243 |
+
else num_head_channels
|
1244 |
+
)
|
1245 |
+
if exists(disable_self_attentions):
|
1246 |
+
disabled_sa = disable_self_attentions[level]
|
1247 |
+
else:
|
1248 |
+
disabled_sa = False
|
1249 |
+
|
1250 |
+
if (
|
1251 |
+
not exists(num_attention_blocks)
|
1252 |
+
or nr < num_attention_blocks[level]
|
1253 |
+
):
|
1254 |
+
layers.append(
|
1255 |
+
checkpoint_wrapper_fn(
|
1256 |
+
AttentionBlock(
|
1257 |
+
ch,
|
1258 |
+
use_checkpoint=use_checkpoint,
|
1259 |
+
num_heads=num_heads,
|
1260 |
+
num_head_channels=dim_head,
|
1261 |
+
use_new_attention_order=use_new_attention_order,
|
1262 |
+
)
|
1263 |
+
)
|
1264 |
+
if not use_spatial_transformer
|
1265 |
+
else checkpoint_wrapper_fn(
|
1266 |
+
SpatialTransformer(
|
1267 |
+
ch,
|
1268 |
+
num_heads,
|
1269 |
+
dim_head,
|
1270 |
+
depth=transformer_depth[level],
|
1271 |
+
context_dim=context_dim,
|
1272 |
+
disable_self_attn=disabled_sa,
|
1273 |
+
use_linear=use_linear_in_transformer,
|
1274 |
+
attn_type=spatial_transformer_attn_type,
|
1275 |
+
use_checkpoint=use_checkpoint,
|
1276 |
+
)
|
1277 |
+
)
|
1278 |
+
)
|
1279 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
1280 |
+
self._feature_size += ch
|
1281 |
+
input_block_chans.append(ch)
|
1282 |
+
if level != len(channel_mult) - 1:
|
1283 |
+
out_ch = ch
|
1284 |
+
self.input_blocks.append(
|
1285 |
+
TimestepEmbedSequential(
|
1286 |
+
checkpoint_wrapper_fn(
|
1287 |
+
ResBlock(
|
1288 |
+
ch,
|
1289 |
+
time_embed_dim,
|
1290 |
+
dropout,
|
1291 |
+
out_channels=out_ch,
|
1292 |
+
dims=dims,
|
1293 |
+
use_checkpoint=use_checkpoint,
|
1294 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1295 |
+
down=True,
|
1296 |
+
)
|
1297 |
+
)
|
1298 |
+
if resblock_updown
|
1299 |
+
else Downsample(
|
1300 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
1301 |
+
)
|
1302 |
+
)
|
1303 |
+
)
|
1304 |
+
ch = out_ch
|
1305 |
+
input_block_chans.append(ch)
|
1306 |
+
ds *= 2
|
1307 |
+
self._feature_size += ch
|
1308 |
+
|
1309 |
+
if num_head_channels == -1:
|
1310 |
+
dim_head = ch // num_heads
|
1311 |
+
else:
|
1312 |
+
num_heads = ch // num_head_channels
|
1313 |
+
dim_head = num_head_channels
|
1314 |
+
if legacy:
|
1315 |
+
# num_heads = 1
|
1316 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
1317 |
+
self.middle_block = TimestepEmbedSequential(
|
1318 |
+
checkpoint_wrapper_fn(
|
1319 |
+
ResBlock(
|
1320 |
+
ch,
|
1321 |
+
time_embed_dim,
|
1322 |
+
dropout,
|
1323 |
+
dims=dims,
|
1324 |
+
use_checkpoint=use_checkpoint,
|
1325 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1326 |
+
)
|
1327 |
+
),
|
1328 |
+
checkpoint_wrapper_fn(
|
1329 |
+
AttentionBlock(
|
1330 |
+
ch,
|
1331 |
+
use_checkpoint=use_checkpoint,
|
1332 |
+
num_heads=num_heads,
|
1333 |
+
num_head_channels=dim_head,
|
1334 |
+
use_new_attention_order=use_new_attention_order,
|
1335 |
+
)
|
1336 |
+
)
|
1337 |
+
if not use_spatial_transformer
|
1338 |
+
else checkpoint_wrapper_fn(
|
1339 |
+
SpatialTransformer( # always uses a self-attn
|
1340 |
+
ch,
|
1341 |
+
num_heads,
|
1342 |
+
dim_head,
|
1343 |
+
depth=transformer_depth_middle,
|
1344 |
+
context_dim=context_dim,
|
1345 |
+
disable_self_attn=disable_middle_self_attn,
|
1346 |
+
use_linear=use_linear_in_transformer,
|
1347 |
+
attn_type=spatial_transformer_attn_type,
|
1348 |
+
use_checkpoint=use_checkpoint,
|
1349 |
+
)
|
1350 |
+
),
|
1351 |
+
checkpoint_wrapper_fn(
|
1352 |
+
ResBlock(
|
1353 |
+
ch,
|
1354 |
+
time_embed_dim,
|
1355 |
+
dropout,
|
1356 |
+
dims=dims,
|
1357 |
+
use_checkpoint=use_checkpoint,
|
1358 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1359 |
+
)
|
1360 |
+
),
|
1361 |
+
)
|
1362 |
+
self._feature_size += ch
|
1363 |
+
|
1364 |
+
self.output_blocks = nn.ModuleList([])
|
1365 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
1366 |
+
for i in range(self.num_res_blocks[level] + 1):
|
1367 |
+
ich = input_block_chans.pop()
|
1368 |
+
layers = [
|
1369 |
+
checkpoint_wrapper_fn(
|
1370 |
+
ResBlock(
|
1371 |
+
ch + ich,
|
1372 |
+
time_embed_dim,
|
1373 |
+
dropout,
|
1374 |
+
out_channels=model_channels * mult,
|
1375 |
+
dims=dims,
|
1376 |
+
use_checkpoint=use_checkpoint,
|
1377 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1378 |
+
)
|
1379 |
+
)
|
1380 |
+
]
|
1381 |
+
ch = model_channels * mult
|
1382 |
+
if ds in attention_resolutions:
|
1383 |
+
if num_head_channels == -1:
|
1384 |
+
dim_head = ch // num_heads
|
1385 |
+
else:
|
1386 |
+
num_heads = ch // num_head_channels
|
1387 |
+
dim_head = num_head_channels
|
1388 |
+
if legacy:
|
1389 |
+
# num_heads = 1
|
1390 |
+
dim_head = (
|
1391 |
+
ch // num_heads
|
1392 |
+
if use_spatial_transformer
|
1393 |
+
else num_head_channels
|
1394 |
+
)
|
1395 |
+
if exists(disable_self_attentions):
|
1396 |
+
disabled_sa = disable_self_attentions[level]
|
1397 |
+
else:
|
1398 |
+
disabled_sa = False
|
1399 |
+
|
1400 |
+
if (
|
1401 |
+
not exists(num_attention_blocks)
|
1402 |
+
or i < num_attention_blocks[level]
|
1403 |
+
):
|
1404 |
+
layers.append(
|
1405 |
+
checkpoint_wrapper_fn(
|
1406 |
+
AttentionBlock(
|
1407 |
+
ch,
|
1408 |
+
use_checkpoint=use_checkpoint,
|
1409 |
+
num_heads=num_heads_upsample,
|
1410 |
+
num_head_channels=dim_head,
|
1411 |
+
use_new_attention_order=use_new_attention_order,
|
1412 |
+
)
|
1413 |
+
)
|
1414 |
+
if not use_spatial_transformer
|
1415 |
+
else checkpoint_wrapper_fn(
|
1416 |
+
SpatialTransformer(
|
1417 |
+
ch,
|
1418 |
+
num_heads,
|
1419 |
+
dim_head,
|
1420 |
+
depth=transformer_depth[level],
|
1421 |
+
context_dim=context_dim,
|
1422 |
+
disable_self_attn=disabled_sa,
|
1423 |
+
use_linear=use_linear_in_transformer,
|
1424 |
+
attn_type=spatial_transformer_attn_type,
|
1425 |
+
use_checkpoint=use_checkpoint,
|
1426 |
+
)
|
1427 |
+
)
|
1428 |
+
)
|
1429 |
+
if level and i == self.num_res_blocks[level]:
|
1430 |
+
out_ch = ch
|
1431 |
+
layers.append(
|
1432 |
+
checkpoint_wrapper_fn(
|
1433 |
+
ResBlock(
|
1434 |
+
ch,
|
1435 |
+
time_embed_dim,
|
1436 |
+
dropout,
|
1437 |
+
out_channels=out_ch,
|
1438 |
+
dims=dims,
|
1439 |
+
use_checkpoint=use_checkpoint,
|
1440 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1441 |
+
up=True,
|
1442 |
+
)
|
1443 |
+
)
|
1444 |
+
if resblock_updown
|
1445 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
1446 |
+
)
|
1447 |
+
ds //= 2
|
1448 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
1449 |
+
self._feature_size += ch
|
1450 |
+
|
1451 |
+
self.out = checkpoint_wrapper_fn(
|
1452 |
+
nn.Sequential(
|
1453 |
+
normalization(ch),
|
1454 |
+
nn.SiLU(),
|
1455 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
1456 |
+
)
|
1457 |
+
)
|
1458 |
+
if self.predict_codebook_ids:
|
1459 |
+
self.id_predictor = checkpoint_wrapper_fn(
|
1460 |
+
nn.Sequential(
|
1461 |
+
normalization(ch),
|
1462 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
1463 |
+
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
1464 |
+
)
|
1465 |
+
)
|
1466 |
+
|
1467 |
+
def convert_to_fp16(self):
|
1468 |
+
"""
|
1469 |
+
Convert the torso of the model to float16.
|
1470 |
+
"""
|
1471 |
+
self.input_blocks.apply(convert_module_to_f16)
|
1472 |
+
self.middle_block.apply(convert_module_to_f16)
|
1473 |
+
self.output_blocks.apply(convert_module_to_f16)
|
1474 |
+
|
1475 |
+
def convert_to_fp32(self):
|
1476 |
+
"""
|
1477 |
+
Convert the torso of the model to float32.
|
1478 |
+
"""
|
1479 |
+
self.input_blocks.apply(convert_module_to_f32)
|
1480 |
+
self.middle_block.apply(convert_module_to_f32)
|
1481 |
+
self.output_blocks.apply(convert_module_to_f32)
|
1482 |
+
|
1483 |
+
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
|
1484 |
+
"""
|
1485 |
+
Apply the model to an input batch.
|
1486 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
1487 |
+
:param timesteps: a 1-D batch of timesteps.
|
1488 |
+
:param context: conditioning plugged in via crossattn
|
1489 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
1490 |
+
:return: an [N x C x ...] Tensor of outputs.
|
1491 |
+
"""
|
1492 |
+
assert (y is not None) == (
|
1493 |
+
self.num_classes is not None
|
1494 |
+
), "must specify y if and only if the model is class-conditional"
|
1495 |
+
hs = []
|
1496 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
1497 |
+
emb = self.time_embed(t_emb)
|
1498 |
+
|
1499 |
+
if self.num_classes is not None:
|
1500 |
+
assert y.shape[0] == x.shape[0]
|
1501 |
+
emb = emb + self.label_emb(y)
|
1502 |
+
|
1503 |
+
# h = x.type(self.dtype)
|
1504 |
+
h = x
|
1505 |
+
for i, module in enumerate(self.input_blocks):
|
1506 |
+
h = module(h, emb, context)
|
1507 |
+
hs.append(h)
|
1508 |
+
h = self.middle_block(h, emb, context)
|
1509 |
+
for i, module in enumerate(self.output_blocks):
|
1510 |
+
h = th.cat([h, hs.pop()], dim=1)
|
1511 |
+
h = module(h, emb, context)
|
1512 |
+
h = h.type(x.dtype)
|
1513 |
+
if self.predict_codebook_ids:
|
1514 |
+
assert False, "not supported anymore. what the f*** are you doing?"
|
1515 |
+
else:
|
1516 |
+
return self.out(h)
|
1517 |
+
|
1518 |
+
|
1519 |
+
import seaborn as sns
|
1520 |
+
import matplotlib.pyplot as plt
|
1521 |
+
|
1522 |
+
class UNetAddModel(nn.Module):
|
1523 |
+
|
1524 |
+
def __init__(
|
1525 |
+
self,
|
1526 |
+
in_channels,
|
1527 |
+
ctrl_channels,
|
1528 |
+
model_channels,
|
1529 |
+
out_channels,
|
1530 |
+
num_res_blocks,
|
1531 |
+
attention_resolutions,
|
1532 |
+
dropout=0,
|
1533 |
+
channel_mult=(1, 2, 4, 8),
|
1534 |
+
attn_type="attn2",
|
1535 |
+
attn_layers=[],
|
1536 |
+
conv_resample=True,
|
1537 |
+
dims=2,
|
1538 |
+
num_classes=None,
|
1539 |
+
use_checkpoint=False,
|
1540 |
+
use_fp16=False,
|
1541 |
+
num_heads=-1,
|
1542 |
+
num_head_channels=-1,
|
1543 |
+
num_heads_upsample=-1,
|
1544 |
+
use_scale_shift_norm=False,
|
1545 |
+
resblock_updown=False,
|
1546 |
+
use_new_attention_order=False,
|
1547 |
+
use_spatial_transformer=False, # custom transformer support
|
1548 |
+
transformer_depth=1, # custom transformer support
|
1549 |
+
context_dim=None, # custom transformer support
|
1550 |
+
add_context_dim=None,
|
1551 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
1552 |
+
legacy=True,
|
1553 |
+
disable_self_attentions=None,
|
1554 |
+
num_attention_blocks=None,
|
1555 |
+
disable_middle_self_attn=False,
|
1556 |
+
use_linear_in_transformer=False,
|
1557 |
+
spatial_transformer_attn_type="softmax",
|
1558 |
+
adm_in_channels=None,
|
1559 |
+
use_fairscale_checkpoint=False,
|
1560 |
+
offload_to_cpu=False,
|
1561 |
+
transformer_depth_middle=None,
|
1562 |
+
):
|
1563 |
+
super().__init__()
|
1564 |
+
from omegaconf.listconfig import ListConfig
|
1565 |
+
|
1566 |
+
if use_spatial_transformer:
|
1567 |
+
assert (
|
1568 |
+
context_dim is not None
|
1569 |
+
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
1570 |
+
|
1571 |
+
if context_dim is not None:
|
1572 |
+
assert (
|
1573 |
+
use_spatial_transformer
|
1574 |
+
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
1575 |
+
if type(context_dim) == ListConfig:
|
1576 |
+
context_dim = list(context_dim)
|
1577 |
+
|
1578 |
+
if num_heads_upsample == -1:
|
1579 |
+
num_heads_upsample = num_heads
|
1580 |
+
|
1581 |
+
if num_heads == -1:
|
1582 |
+
assert (
|
1583 |
+
num_head_channels != -1
|
1584 |
+
), "Either num_heads or num_head_channels has to be set"
|
1585 |
+
|
1586 |
+
if num_head_channels == -1:
|
1587 |
+
assert (
|
1588 |
+
num_heads != -1
|
1589 |
+
), "Either num_heads or num_head_channels has to be set"
|
1590 |
+
|
1591 |
+
self.in_channels = in_channels
|
1592 |
+
self.ctrl_channels = ctrl_channels
|
1593 |
+
self.model_channels = model_channels
|
1594 |
+
self.out_channels = out_channels
|
1595 |
+
if isinstance(transformer_depth, int):
|
1596 |
+
transformer_depth = len(channel_mult) * [transformer_depth]
|
1597 |
+
elif isinstance(transformer_depth, ListConfig):
|
1598 |
+
transformer_depth = list(transformer_depth)
|
1599 |
+
transformer_depth_middle = default(
|
1600 |
+
transformer_depth_middle, transformer_depth[-1]
|
1601 |
+
)
|
1602 |
+
|
1603 |
+
if isinstance(num_res_blocks, int):
|
1604 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
1605 |
+
else:
|
1606 |
+
if len(num_res_blocks) != len(channel_mult):
|
1607 |
+
raise ValueError(
|
1608 |
+
"provide num_res_blocks either as an int (globally constant) or "
|
1609 |
+
"as a list/tuple (per-level) with the same length as channel_mult"
|
1610 |
+
)
|
1611 |
+
self.num_res_blocks = num_res_blocks
|
1612 |
+
# self.num_res_blocks = num_res_blocks
|
1613 |
+
if disable_self_attentions is not None:
|
1614 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
1615 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
1616 |
+
if num_attention_blocks is not None:
|
1617 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
1618 |
+
assert all(
|
1619 |
+
map(
|
1620 |
+
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
1621 |
+
range(len(num_attention_blocks)),
|
1622 |
+
)
|
1623 |
+
)
|
1624 |
+
print(
|
1625 |
+
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
1626 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
1627 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
1628 |
+
f"attention will still not be set."
|
1629 |
+
) # todo: convert to warning
|
1630 |
+
|
1631 |
+
self.attention_resolutions = attention_resolutions
|
1632 |
+
self.dropout = dropout
|
1633 |
+
self.channel_mult = channel_mult
|
1634 |
+
self.conv_resample = conv_resample
|
1635 |
+
self.num_classes = num_classes
|
1636 |
+
self.use_checkpoint = use_checkpoint
|
1637 |
+
if use_fp16:
|
1638 |
+
print("WARNING: use_fp16 was dropped and has no effect anymore.")
|
1639 |
+
# self.dtype = th.float16 if use_fp16 else th.float32
|
1640 |
+
self.num_heads = num_heads
|
1641 |
+
self.num_head_channels = num_head_channels
|
1642 |
+
self.num_heads_upsample = num_heads_upsample
|
1643 |
+
self.predict_codebook_ids = n_embed is not None
|
1644 |
+
|
1645 |
+
assert use_fairscale_checkpoint != use_checkpoint or not (
|
1646 |
+
use_checkpoint or use_fairscale_checkpoint
|
1647 |
+
)
|
1648 |
+
|
1649 |
+
self.use_fairscale_checkpoint = False
|
1650 |
+
checkpoint_wrapper_fn = (
|
1651 |
+
partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu)
|
1652 |
+
if self.use_fairscale_checkpoint
|
1653 |
+
else lambda x: x
|
1654 |
+
)
|
1655 |
+
|
1656 |
+
time_embed_dim = model_channels * 4
|
1657 |
+
self.time_embed = checkpoint_wrapper_fn(
|
1658 |
+
nn.Sequential(
|
1659 |
+
linear(model_channels, time_embed_dim),
|
1660 |
+
nn.SiLU(),
|
1661 |
+
linear(time_embed_dim, time_embed_dim),
|
1662 |
+
)
|
1663 |
+
)
|
1664 |
+
|
1665 |
+
if self.num_classes is not None:
|
1666 |
+
if isinstance(self.num_classes, int):
|
1667 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
1668 |
+
elif self.num_classes == "continuous":
|
1669 |
+
print("setting up linear c_adm embedding layer")
|
1670 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
1671 |
+
elif self.num_classes == "timestep":
|
1672 |
+
self.label_emb = checkpoint_wrapper_fn(
|
1673 |
+
nn.Sequential(
|
1674 |
+
Timestep(model_channels),
|
1675 |
+
nn.Sequential(
|
1676 |
+
linear(model_channels, time_embed_dim),
|
1677 |
+
nn.SiLU(),
|
1678 |
+
linear(time_embed_dim, time_embed_dim),
|
1679 |
+
),
|
1680 |
+
)
|
1681 |
+
)
|
1682 |
+
elif self.num_classes == "sequential":
|
1683 |
+
assert adm_in_channels is not None
|
1684 |
+
self.label_emb = nn.Sequential(
|
1685 |
+
nn.Sequential(
|
1686 |
+
linear(adm_in_channels, time_embed_dim),
|
1687 |
+
nn.SiLU(),
|
1688 |
+
linear(time_embed_dim, time_embed_dim),
|
1689 |
+
)
|
1690 |
+
)
|
1691 |
+
else:
|
1692 |
+
raise ValueError()
|
1693 |
+
|
1694 |
+
self.input_blocks = nn.ModuleList(
|
1695 |
+
[
|
1696 |
+
TimestepEmbedSequential(
|
1697 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
1698 |
+
)
|
1699 |
+
]
|
1700 |
+
)
|
1701 |
+
if self.ctrl_channels > 0:
|
1702 |
+
self.add_input_block = TimestepEmbedSequential(
|
1703 |
+
conv_nd(dims, ctrl_channels, 16, 3, padding=1),
|
1704 |
+
nn.SiLU(),
|
1705 |
+
conv_nd(dims, 16, 16, 3, padding=1),
|
1706 |
+
nn.SiLU(),
|
1707 |
+
conv_nd(dims, 16, 32, 3, padding=1),
|
1708 |
+
nn.SiLU(),
|
1709 |
+
conv_nd(dims, 32, 32, 3, padding=1),
|
1710 |
+
nn.SiLU(),
|
1711 |
+
conv_nd(dims, 32, 96, 3, padding=1),
|
1712 |
+
nn.SiLU(),
|
1713 |
+
conv_nd(dims, 96, 96, 3, padding=1),
|
1714 |
+
nn.SiLU(),
|
1715 |
+
conv_nd(dims, 96, 256, 3, padding=1),
|
1716 |
+
nn.SiLU(),
|
1717 |
+
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
|
1718 |
+
)
|
1719 |
+
|
1720 |
+
self._feature_size = model_channels
|
1721 |
+
input_block_chans = [model_channels]
|
1722 |
+
ch = model_channels
|
1723 |
+
ds = 1
|
1724 |
+
for level, mult in enumerate(channel_mult):
|
1725 |
+
for nr in range(self.num_res_blocks[level]):
|
1726 |
+
layers = [
|
1727 |
+
checkpoint_wrapper_fn(
|
1728 |
+
ResBlock(
|
1729 |
+
ch,
|
1730 |
+
time_embed_dim,
|
1731 |
+
dropout,
|
1732 |
+
out_channels=mult * model_channels,
|
1733 |
+
dims=dims,
|
1734 |
+
use_checkpoint=use_checkpoint,
|
1735 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1736 |
+
)
|
1737 |
+
)
|
1738 |
+
]
|
1739 |
+
ch = mult * model_channels
|
1740 |
+
if ds in attention_resolutions:
|
1741 |
+
if num_head_channels == -1:
|
1742 |
+
dim_head = ch // num_heads
|
1743 |
+
else:
|
1744 |
+
num_heads = ch // num_head_channels
|
1745 |
+
dim_head = num_head_channels
|
1746 |
+
if legacy:
|
1747 |
+
# num_heads = 1
|
1748 |
+
dim_head = (
|
1749 |
+
ch // num_heads
|
1750 |
+
if use_spatial_transformer
|
1751 |
+
else num_head_channels
|
1752 |
+
)
|
1753 |
+
if exists(disable_self_attentions):
|
1754 |
+
disabled_sa = disable_self_attentions[level]
|
1755 |
+
else:
|
1756 |
+
disabled_sa = False
|
1757 |
+
|
1758 |
+
if (
|
1759 |
+
not exists(num_attention_blocks)
|
1760 |
+
or nr < num_attention_blocks[level]
|
1761 |
+
):
|
1762 |
+
layers.append(
|
1763 |
+
checkpoint_wrapper_fn(
|
1764 |
+
AttentionBlock(
|
1765 |
+
ch,
|
1766 |
+
use_checkpoint=use_checkpoint,
|
1767 |
+
num_heads=num_heads,
|
1768 |
+
num_head_channels=dim_head,
|
1769 |
+
use_new_attention_order=use_new_attention_order,
|
1770 |
+
)
|
1771 |
+
)
|
1772 |
+
if not use_spatial_transformer
|
1773 |
+
else checkpoint_wrapper_fn(
|
1774 |
+
SpatialTransformer(
|
1775 |
+
ch,
|
1776 |
+
num_heads,
|
1777 |
+
dim_head,
|
1778 |
+
depth=transformer_depth[level],
|
1779 |
+
context_dim=context_dim,
|
1780 |
+
add_context_dim=add_context_dim,
|
1781 |
+
disable_self_attn=disabled_sa,
|
1782 |
+
use_linear=use_linear_in_transformer,
|
1783 |
+
attn_type=spatial_transformer_attn_type,
|
1784 |
+
use_checkpoint=use_checkpoint,
|
1785 |
+
)
|
1786 |
+
)
|
1787 |
+
)
|
1788 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
1789 |
+
self._feature_size += ch
|
1790 |
+
input_block_chans.append(ch)
|
1791 |
+
if level != len(channel_mult) - 1:
|
1792 |
+
out_ch = ch
|
1793 |
+
self.input_blocks.append(
|
1794 |
+
TimestepEmbedSequential(
|
1795 |
+
checkpoint_wrapper_fn(
|
1796 |
+
ResBlock(
|
1797 |
+
ch,
|
1798 |
+
time_embed_dim,
|
1799 |
+
dropout,
|
1800 |
+
out_channels=out_ch,
|
1801 |
+
dims=dims,
|
1802 |
+
use_checkpoint=use_checkpoint,
|
1803 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1804 |
+
down=True,
|
1805 |
+
)
|
1806 |
+
)
|
1807 |
+
if resblock_updown
|
1808 |
+
else Downsample(
|
1809 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
1810 |
+
)
|
1811 |
+
)
|
1812 |
+
)
|
1813 |
+
ch = out_ch
|
1814 |
+
input_block_chans.append(ch)
|
1815 |
+
ds *= 2
|
1816 |
+
self._feature_size += ch
|
1817 |
+
|
1818 |
+
if num_head_channels == -1:
|
1819 |
+
dim_head = ch // num_heads
|
1820 |
+
else:
|
1821 |
+
num_heads = ch // num_head_channels
|
1822 |
+
dim_head = num_head_channels
|
1823 |
+
if legacy:
|
1824 |
+
# num_heads = 1
|
1825 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
1826 |
+
self.middle_block = TimestepEmbedSequential(
|
1827 |
+
checkpoint_wrapper_fn(
|
1828 |
+
ResBlock(
|
1829 |
+
ch,
|
1830 |
+
time_embed_dim,
|
1831 |
+
dropout,
|
1832 |
+
dims=dims,
|
1833 |
+
use_checkpoint=use_checkpoint,
|
1834 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1835 |
+
)
|
1836 |
+
),
|
1837 |
+
checkpoint_wrapper_fn(
|
1838 |
+
AttentionBlock(
|
1839 |
+
ch,
|
1840 |
+
use_checkpoint=use_checkpoint,
|
1841 |
+
num_heads=num_heads,
|
1842 |
+
num_head_channels=dim_head,
|
1843 |
+
use_new_attention_order=use_new_attention_order,
|
1844 |
+
)
|
1845 |
+
)
|
1846 |
+
if not use_spatial_transformer
|
1847 |
+
else checkpoint_wrapper_fn(
|
1848 |
+
SpatialTransformer( # always uses a self-attn
|
1849 |
+
ch,
|
1850 |
+
num_heads,
|
1851 |
+
dim_head,
|
1852 |
+
depth=transformer_depth_middle,
|
1853 |
+
context_dim=context_dim,
|
1854 |
+
add_context_dim=add_context_dim,
|
1855 |
+
disable_self_attn=disable_middle_self_attn,
|
1856 |
+
use_linear=use_linear_in_transformer,
|
1857 |
+
attn_type=spatial_transformer_attn_type,
|
1858 |
+
use_checkpoint=use_checkpoint,
|
1859 |
+
)
|
1860 |
+
),
|
1861 |
+
checkpoint_wrapper_fn(
|
1862 |
+
ResBlock(
|
1863 |
+
ch,
|
1864 |
+
time_embed_dim,
|
1865 |
+
dropout,
|
1866 |
+
dims=dims,
|
1867 |
+
use_checkpoint=use_checkpoint,
|
1868 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1869 |
+
)
|
1870 |
+
),
|
1871 |
+
)
|
1872 |
+
self._feature_size += ch
|
1873 |
+
|
1874 |
+
self.output_blocks = nn.ModuleList([])
|
1875 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
1876 |
+
for i in range(self.num_res_blocks[level] + 1):
|
1877 |
+
ich = input_block_chans.pop()
|
1878 |
+
layers = [
|
1879 |
+
checkpoint_wrapper_fn(
|
1880 |
+
ResBlock(
|
1881 |
+
ch + ich,
|
1882 |
+
time_embed_dim,
|
1883 |
+
dropout,
|
1884 |
+
out_channels=model_channels * mult,
|
1885 |
+
dims=dims,
|
1886 |
+
use_checkpoint=use_checkpoint,
|
1887 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1888 |
+
)
|
1889 |
+
)
|
1890 |
+
]
|
1891 |
+
ch = model_channels * mult
|
1892 |
+
if ds in attention_resolutions:
|
1893 |
+
if num_head_channels == -1:
|
1894 |
+
dim_head = ch // num_heads
|
1895 |
+
else:
|
1896 |
+
num_heads = ch // num_head_channels
|
1897 |
+
dim_head = num_head_channels
|
1898 |
+
if legacy:
|
1899 |
+
# num_heads = 1
|
1900 |
+
dim_head = (
|
1901 |
+
ch // num_heads
|
1902 |
+
if use_spatial_transformer
|
1903 |
+
else num_head_channels
|
1904 |
+
)
|
1905 |
+
if exists(disable_self_attentions):
|
1906 |
+
disabled_sa = disable_self_attentions[level]
|
1907 |
+
else:
|
1908 |
+
disabled_sa = False
|
1909 |
+
|
1910 |
+
if (
|
1911 |
+
not exists(num_attention_blocks)
|
1912 |
+
or i < num_attention_blocks[level]
|
1913 |
+
):
|
1914 |
+
layers.append(
|
1915 |
+
checkpoint_wrapper_fn(
|
1916 |
+
AttentionBlock(
|
1917 |
+
ch,
|
1918 |
+
use_checkpoint=use_checkpoint,
|
1919 |
+
num_heads=num_heads_upsample,
|
1920 |
+
num_head_channels=dim_head,
|
1921 |
+
use_new_attention_order=use_new_attention_order,
|
1922 |
+
)
|
1923 |
+
)
|
1924 |
+
if not use_spatial_transformer
|
1925 |
+
else checkpoint_wrapper_fn(
|
1926 |
+
SpatialTransformer(
|
1927 |
+
ch,
|
1928 |
+
num_heads,
|
1929 |
+
dim_head,
|
1930 |
+
depth=transformer_depth[level],
|
1931 |
+
context_dim=context_dim,
|
1932 |
+
add_context_dim=add_context_dim,
|
1933 |
+
disable_self_attn=disabled_sa,
|
1934 |
+
use_linear=use_linear_in_transformer,
|
1935 |
+
attn_type=spatial_transformer_attn_type,
|
1936 |
+
use_checkpoint=use_checkpoint,
|
1937 |
+
)
|
1938 |
+
)
|
1939 |
+
)
|
1940 |
+
if level and i == self.num_res_blocks[level]:
|
1941 |
+
out_ch = ch
|
1942 |
+
layers.append(
|
1943 |
+
checkpoint_wrapper_fn(
|
1944 |
+
ResBlock(
|
1945 |
+
ch,
|
1946 |
+
time_embed_dim,
|
1947 |
+
dropout,
|
1948 |
+
out_channels=out_ch,
|
1949 |
+
dims=dims,
|
1950 |
+
use_checkpoint=use_checkpoint,
|
1951 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1952 |
+
up=True,
|
1953 |
+
)
|
1954 |
+
)
|
1955 |
+
if resblock_updown
|
1956 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
1957 |
+
)
|
1958 |
+
ds //= 2
|
1959 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
1960 |
+
self._feature_size += ch
|
1961 |
+
|
1962 |
+
self.out = checkpoint_wrapper_fn(
|
1963 |
+
nn.Sequential(
|
1964 |
+
normalization(ch),
|
1965 |
+
nn.SiLU(),
|
1966 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
1967 |
+
)
|
1968 |
+
)
|
1969 |
+
if self.predict_codebook_ids:
|
1970 |
+
self.id_predictor = checkpoint_wrapper_fn(
|
1971 |
+
nn.Sequential(
|
1972 |
+
normalization(ch),
|
1973 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
1974 |
+
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
1975 |
+
)
|
1976 |
+
)
|
1977 |
+
|
1978 |
+
# cache attn map
|
1979 |
+
self.attn_type = attn_type
|
1980 |
+
self.attn_layers = attn_layers
|
1981 |
+
self.attn_map_cache = []
|
1982 |
+
for name, module in self.named_modules():
|
1983 |
+
if name.endswith(self.attn_type):
|
1984 |
+
item = {"name": name, "heads": module.heads, "size": None, "attn_map": None}
|
1985 |
+
self.attn_map_cache.append(item)
|
1986 |
+
module.attn_map_cache = item
|
1987 |
+
|
1988 |
+
def clear_attn_map(self):
|
1989 |
+
|
1990 |
+
for item in self.attn_map_cache:
|
1991 |
+
if item["attn_map"] is not None:
|
1992 |
+
del item["attn_map"]
|
1993 |
+
item["attn_map"] = None
|
1994 |
+
|
1995 |
+
def save_attn_map(self, save_name="temp", tokens=""):
|
1996 |
+
|
1997 |
+
attn_maps = []
|
1998 |
+
for item in self.attn_map_cache:
|
1999 |
+
name = item["name"]
|
2000 |
+
if any([name.startswith(block) for block in self.attn_layers]):
|
2001 |
+
heads = item["heads"]
|
2002 |
+
attn_maps.append(item["attn_map"].detach().cpu())
|
2003 |
+
|
2004 |
+
attn_map = th.stack(attn_maps, dim=0)
|
2005 |
+
attn_map = th.mean(attn_map, dim=0)
|
2006 |
+
|
2007 |
+
# attn_map: bh * n * l
|
2008 |
+
bh, n, l = attn_map.shape # bh: batch size * heads / n : pixel length(h*w) / l: token length
|
2009 |
+
attn_map = attn_map.reshape((-1,heads,n,l)).mean(dim=1)
|
2010 |
+
b = attn_map.shape[0]
|
2011 |
+
|
2012 |
+
h = w = int(n**0.5)
|
2013 |
+
attn_map = attn_map.permute(0,2,1).reshape((b,l,h,w)).numpy()
|
2014 |
+
|
2015 |
+
attn_map_i = attn_map[-1]
|
2016 |
+
|
2017 |
+
l = attn_map_i.shape[0]
|
2018 |
+
fig = plt.figure(figsize=(12, 8), dpi=300)
|
2019 |
+
for j in range(12):
|
2020 |
+
if j >= l: break
|
2021 |
+
ax = fig.add_subplot(3, 4, j+1)
|
2022 |
+
sns.heatmap(attn_map_i[j], square=True, xticklabels=False, yticklabels=False)
|
2023 |
+
if j < len(tokens):
|
2024 |
+
ax.set_title(tokens[j])
|
2025 |
+
fig.savefig(f"temp/attn_map/attn_map_{save_name}.png")
|
2026 |
+
plt.close()
|
2027 |
+
|
2028 |
+
return attn_map_i
|
2029 |
+
|
2030 |
+
def forward(self, x, timesteps=None, context=None, add_context=None, y=None, **kwargs):
|
2031 |
+
"""
|
2032 |
+
Apply the model to an input batch.
|
2033 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
2034 |
+
:param timesteps: a 1-D batch of timesteps.
|
2035 |
+
:param context: conditioning plugged in via crossattn
|
2036 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
2037 |
+
:return: an [N x C x ...] Tensor of outputs.
|
2038 |
+
"""
|
2039 |
+
assert (y is not None) == (
|
2040 |
+
self.num_classes is not None
|
2041 |
+
), "must specify y if and only if the model is class-conditional"
|
2042 |
+
|
2043 |
+
self.clear_attn_map()
|
2044 |
+
|
2045 |
+
hs = []
|
2046 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
2047 |
+
emb = self.time_embed(t_emb)
|
2048 |
+
|
2049 |
+
if self.num_classes is not None:
|
2050 |
+
assert y.shape[0] == x.shape[0]
|
2051 |
+
emb = emb + self.label_emb(y)
|
2052 |
+
|
2053 |
+
# h = x.type(self.dtype)
|
2054 |
+
h = x
|
2055 |
+
if self.ctrl_channels > 0:
|
2056 |
+
in_h, add_h = th.split(h, [self.in_channels, self.ctrl_channels], dim=1)
|
2057 |
+
|
2058 |
for i, module in enumerate(self.input_blocks):
|
2059 |
if self.ctrl_channels > 0 and i == 0:
|
2060 |
+
h = module(in_h, emb, context, add_context) + self.add_input_block(add_h, emb, context, add_context)
|
2061 |
else:
|
2062 |
+
h = module(h, emb, context, add_context)
|
2063 |
hs.append(h)
|
2064 |
+
h = self.middle_block(h, emb, context, add_context)
|
2065 |
for i, module in enumerate(self.output_blocks):
|
2066 |
h = th.cat([h, hs.pop()], dim=1)
|
2067 |
+
h = module(h, emb, context, add_context)
|
2068 |
h = h.type(x.dtype)
|
2069 |
|
2070 |
return self.out(h)
|
sgm/modules/diffusionmodules/sampling.py
CHANGED
@@ -7,6 +7,7 @@ from typing import Dict, Union
|
|
7 |
|
8 |
import imageio
|
9 |
import torch
|
|
|
10 |
import numpy as np
|
11 |
import torch.nn.functional as F
|
12 |
from omegaconf import ListConfig, OmegaConf
|
@@ -251,15 +252,47 @@ class EulerEDMSampler(EDMSampler):
|
|
251 |
|
252 |
return x
|
253 |
|
254 |
-
def
|
|
|
|
|
255 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
sections = []
|
257 |
for i in range(len(tokens)):
|
258 |
attn_map = attn_maps[i]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
sections.append(attn_map)
|
260 |
|
261 |
section = np.stack(sections)
|
262 |
-
np.save(f"
|
|
|
|
|
263 |
|
264 |
def get_init_noise(self, cfgs, model, cond, batch, uc=None):
|
265 |
|
@@ -343,7 +376,8 @@ class EulerEDMSampler(EDMSampler):
|
|
343 |
local_loss = torch.zeros(1)
|
344 |
if save_attn:
|
345 |
attn_map = model.model.diffusion_model.save_attn_map(save_name=name, tokens=batch["label"][0])
|
346 |
-
|
|
|
347 |
|
348 |
d = to_d(x, sigma_hat, denoised)
|
349 |
dt = append_dims(next_sigma - sigma_hat, x.ndim)
|
@@ -376,7 +410,7 @@ class EulerEDMSampler(EDMSampler):
|
|
376 |
|
377 |
alpha = 20 * np.sqrt(scales[i])
|
378 |
update = aae_enabled
|
379 |
-
save_loss =
|
380 |
save_attn = detailed and (i == (num_sigmas-1)//2)
|
381 |
save_inter = aae_enabled
|
382 |
|
@@ -412,12 +446,195 @@ class EulerEDMSampler(EDMSampler):
|
|
412 |
inter = inter.cpu().numpy().transpose(1, 2, 0) * 255
|
413 |
inters.append(inter.astype(np.uint8))
|
414 |
|
415 |
-
|
416 |
|
417 |
if len(inters) > 0:
|
418 |
imageio.mimsave(f"./temp/inters/{name}.gif", inters, 'GIF', duration=0.02)
|
419 |
|
420 |
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
|
422 |
|
423 |
class HeunEDMSampler(EDMSampler):
|
|
|
7 |
|
8 |
import imageio
|
9 |
import torch
|
10 |
+
import json
|
11 |
import numpy as np
|
12 |
import torch.nn.functional as F
|
13 |
from omegaconf import ListConfig, OmegaConf
|
|
|
252 |
|
253 |
return x
|
254 |
|
255 |
+
def create_pascal_label_colormap(self):
|
256 |
+
"""
|
257 |
+
PASCAL VOC 分割数据集的类别标签颜色映射label colormap
|
258 |
|
259 |
+
返回:
|
260 |
+
可视化分割结果的颜色映射Colormap
|
261 |
+
"""
|
262 |
+
colormap = np.zeros((256, 3), dtype=int)
|
263 |
+
ind = np.arange(256, dtype=int)
|
264 |
+
|
265 |
+
for shift in reversed(range(8)):
|
266 |
+
for channel in range(3):
|
267 |
+
colormap[:, channel] |= ((ind >> channel) & 1) << shift
|
268 |
+
ind >>= 3
|
269 |
+
|
270 |
+
return colormap
|
271 |
+
|
272 |
+
def save_segment_map(self, image, attn_maps, tokens=None, save_name=None):
|
273 |
+
|
274 |
+
colormap = self.create_pascal_label_colormap()
|
275 |
+
H, W = image.shape[-2:]
|
276 |
+
|
277 |
+
image_ = image*0.3
|
278 |
sections = []
|
279 |
for i in range(len(tokens)):
|
280 |
attn_map = attn_maps[i]
|
281 |
+
attn_map_t = np.tile(attn_map[None], (1,3,1,1)) # b, 3, h, w
|
282 |
+
attn_map_t = torch.from_numpy(attn_map_t)
|
283 |
+
attn_map_t = F.interpolate(attn_map_t, (W, H))
|
284 |
+
|
285 |
+
color = torch.from_numpy(colormap[i+1][None,:,None,None] / 255.0)
|
286 |
+
colored_attn_map = attn_map_t * color
|
287 |
+
colored_attn_map = colored_attn_map.to(device=image_.device)
|
288 |
+
|
289 |
+
image_ += colored_attn_map*0.7
|
290 |
sections.append(attn_map)
|
291 |
|
292 |
section = np.stack(sections)
|
293 |
+
np.save(f"temp/seg_map/seg_{save_name}.npy", section)
|
294 |
+
|
295 |
+
save_image(image_, f"temp/seg_map/seg_{save_name}.png", normalize=True)
|
296 |
|
297 |
def get_init_noise(self, cfgs, model, cond, batch, uc=None):
|
298 |
|
|
|
376 |
local_loss = torch.zeros(1)
|
377 |
if save_attn:
|
378 |
attn_map = model.model.diffusion_model.save_attn_map(save_name=name, tokens=batch["label"][0])
|
379 |
+
denoised_decode = model.decode_first_stage(denoised) if denoised_decode is None else denoised_decode
|
380 |
+
self.save_segment_map(denoised_decode, attn_map, tokens=batch["label"][0], save_name=name)
|
381 |
|
382 |
d = to_d(x, sigma_hat, denoised)
|
383 |
dt = append_dims(next_sigma - sigma_hat, x.ndim)
|
|
|
410 |
|
411 |
alpha = 20 * np.sqrt(scales[i])
|
412 |
update = aae_enabled
|
413 |
+
save_loss = detailed
|
414 |
save_attn = detailed and (i == (num_sigmas-1)//2)
|
415 |
save_inter = aae_enabled
|
416 |
|
|
|
446 |
inter = inter.cpu().numpy().transpose(1, 2, 0) * 255
|
447 |
inters.append(inter.astype(np.uint8))
|
448 |
|
449 |
+
print(f"Local losses: {local_losses}")
|
450 |
|
451 |
if len(inters) > 0:
|
452 |
imageio.mimsave(f"./temp/inters/{name}.gif", inters, 'GIF', duration=0.02)
|
453 |
|
454 |
return x
|
455 |
+
|
456 |
+
|
457 |
+
class EulerEDMDualSampler(EulerEDMSampler):
|
458 |
+
|
459 |
+
def prepare_sampling_loop(self, x, cond, uc_1=None, uc_2=None, num_steps=None):
|
460 |
+
sigmas = self.discretization(
|
461 |
+
self.num_steps if num_steps is None else num_steps, device=self.device
|
462 |
+
)
|
463 |
+
uc_1 = default(uc_1, cond)
|
464 |
+
uc_2 = default(uc_2, cond)
|
465 |
+
|
466 |
+
x *= torch.sqrt(1.0 + sigmas[0] ** 2.0)
|
467 |
+
num_sigmas = len(sigmas)
|
468 |
+
|
469 |
+
s_in = x.new_ones([x.shape[0]])
|
470 |
+
|
471 |
+
return x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2
|
472 |
+
|
473 |
+
def denoise(self, x, model, sigma, cond, uc_1, uc_2):
|
474 |
+
denoised = model.denoiser(model.model, *self.guider.prepare_inputs(x, sigma, cond, uc_1, uc_2))
|
475 |
+
denoised = self.guider(denoised, sigma)
|
476 |
+
return denoised
|
477 |
+
|
478 |
+
def get_init_noise(self, cfgs, model, cond, batch, uc_1=None, uc_2=None):
|
479 |
+
|
480 |
+
H, W = batch["target_size_as_tuple"][0]
|
481 |
+
shape = (cfgs.batch_size, cfgs.channel, int(H) // cfgs.factor, int(W) // cfgs.factor)
|
482 |
+
|
483 |
+
randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu))
|
484 |
+
x = randn.clone()
|
485 |
+
|
486 |
+
xs = []
|
487 |
+
self.verbose = False
|
488 |
+
for _ in range(cfgs.noise_iters):
|
489 |
+
|
490 |
+
x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2 = self.prepare_sampling_loop(
|
491 |
+
x, cond, uc_1, uc_2, num_steps=2
|
492 |
+
)
|
493 |
+
|
494 |
+
superv = {
|
495 |
+
"mask": batch["mask"] if "mask" in batch else None,
|
496 |
+
"seg_mask": batch["seg_mask"] if "seg_mask" in batch else None
|
497 |
+
}
|
498 |
+
|
499 |
+
local_losses = []
|
500 |
+
|
501 |
+
for i in self.get_sigma_gen(num_sigmas):
|
502 |
+
|
503 |
+
gamma = (
|
504 |
+
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
|
505 |
+
if self.s_tmin <= sigmas[i] <= self.s_tmax
|
506 |
+
else 0.0
|
507 |
+
)
|
508 |
+
|
509 |
+
x, inter, local_loss = self.sampler_step(
|
510 |
+
s_in * sigmas[i],
|
511 |
+
s_in * sigmas[i + 1],
|
512 |
+
model,
|
513 |
+
x,
|
514 |
+
cond,
|
515 |
+
superv,
|
516 |
+
uc_1,
|
517 |
+
uc_2,
|
518 |
+
gamma,
|
519 |
+
save_loss=True
|
520 |
+
)
|
521 |
+
|
522 |
+
local_losses.append(local_loss.item())
|
523 |
+
|
524 |
+
xs.append((randn, local_losses[-1]))
|
525 |
+
|
526 |
+
randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu))
|
527 |
+
x = randn.clone()
|
528 |
+
|
529 |
+
self.verbose = True
|
530 |
+
|
531 |
+
xs.sort(key = lambda x: x[-1])
|
532 |
+
|
533 |
+
if len(xs) > 0:
|
534 |
+
print(f"Init local loss: Best {xs[0][1]} Worst {xs[-1][1]}")
|
535 |
+
x = xs[0][0]
|
536 |
+
|
537 |
+
return x
|
538 |
+
|
539 |
+
def sampler_step(self, sigma, next_sigma, model, x, cond, batch=None, uc_1=None, uc_2=None,
|
540 |
+
gamma=0.0, alpha=0, iter_enabled=False, thres=None, update=False,
|
541 |
+
name=None, save_loss=False, save_attn=False, save_inter=False):
|
542 |
+
|
543 |
+
sigma_hat = sigma * (gamma + 1.0)
|
544 |
+
if gamma > 0:
|
545 |
+
eps = torch.randn_like(x) * self.s_noise
|
546 |
+
x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5
|
547 |
+
|
548 |
+
if update:
|
549 |
+
x = self.attend_and_excite(x, model, sigma_hat, cond, batch, alpha, iter_enabled, thres)
|
550 |
+
|
551 |
+
denoised = self.denoise(x, model, sigma_hat, cond, uc_1, uc_2)
|
552 |
+
denoised_decode = model.decode_first_stage(denoised) if save_inter else None
|
553 |
+
|
554 |
+
if save_loss:
|
555 |
+
local_loss = model.loss_fn.get_min_local_loss(model.model.diffusion_model.attn_map_cache, batch["mask"], batch["seg_mask"])
|
556 |
+
local_loss = local_loss[-local_loss.shape[0]//3:]
|
557 |
+
else:
|
558 |
+
local_loss = torch.zeros(1)
|
559 |
+
if save_attn:
|
560 |
+
attn_map = model.model.diffusion_model.save_attn_map(save_name=name, save_single=True)
|
561 |
+
denoised_decode = model.decode_first_stage(denoised) if denoised_decode is None else denoised_decode
|
562 |
+
self.save_segment_map(denoised_decode, attn_map, tokens=batch["label"][0], save_name=name)
|
563 |
+
|
564 |
+
d = to_d(x, sigma_hat, denoised)
|
565 |
+
dt = append_dims(next_sigma - sigma_hat, x.ndim)
|
566 |
+
|
567 |
+
euler_step = self.euler_step(x, d, dt)
|
568 |
+
|
569 |
+
return euler_step, denoised_decode, local_loss
|
570 |
+
|
571 |
+
def __call__(self, model, x, cond, batch=None, uc_1=None, uc_2=None, num_steps=None, init_step=0,
|
572 |
+
name=None, aae_enabled=False, detailed=False):
|
573 |
+
|
574 |
+
x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2 = self.prepare_sampling_loop(
|
575 |
+
x, cond, uc_1, uc_2, num_steps
|
576 |
+
)
|
577 |
+
|
578 |
+
name = batch["name"][0]
|
579 |
+
inters = []
|
580 |
+
local_losses = []
|
581 |
+
scales = np.linspace(start=1.0, stop=0, num=num_sigmas)
|
582 |
+
iter_lst = np.linspace(start=5, stop=25, num=6, dtype=np.int32)
|
583 |
+
thres_lst = np.linspace(start=-0.5, stop=-0.8, num=6)
|
584 |
+
|
585 |
+
for i in self.get_sigma_gen(num_sigmas, init_step=init_step):
|
586 |
+
|
587 |
+
gamma = (
|
588 |
+
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
|
589 |
+
if self.s_tmin <= sigmas[i] <= self.s_tmax
|
590 |
+
else 0.0
|
591 |
+
)
|
592 |
+
|
593 |
+
alpha = 20 * np.sqrt(scales[i])
|
594 |
+
update = aae_enabled
|
595 |
+
save_loss = aae_enabled
|
596 |
+
save_attn = detailed and (i == (num_sigmas-1)//2)
|
597 |
+
save_inter = aae_enabled
|
598 |
+
|
599 |
+
if i in iter_lst:
|
600 |
+
iter_enabled = True
|
601 |
+
thres = thres_lst[list(iter_lst).index(i)]
|
602 |
+
else:
|
603 |
+
iter_enabled = False
|
604 |
+
thres = 0.0
|
605 |
+
|
606 |
+
x, inter, local_loss = self.sampler_step(
|
607 |
+
s_in * sigmas[i],
|
608 |
+
s_in * sigmas[i + 1],
|
609 |
+
model,
|
610 |
+
x,
|
611 |
+
cond,
|
612 |
+
batch,
|
613 |
+
uc_1,
|
614 |
+
uc_2,
|
615 |
+
gamma,
|
616 |
+
alpha=alpha,
|
617 |
+
iter_enabled=iter_enabled,
|
618 |
+
thres=thres,
|
619 |
+
update=update,
|
620 |
+
name=name,
|
621 |
+
save_loss=save_loss,
|
622 |
+
save_attn=save_attn,
|
623 |
+
save_inter=save_inter
|
624 |
+
)
|
625 |
+
|
626 |
+
local_losses.append(local_loss.item())
|
627 |
+
if inter is not None:
|
628 |
+
inter = torch.clamp((inter + 1.0) / 2.0, min=0.0, max=1.0)[0]
|
629 |
+
inter = inter.cpu().numpy().transpose(1, 2, 0) * 255
|
630 |
+
inters.append(inter.astype(np.uint8))
|
631 |
+
|
632 |
+
print(f"Local losses: {local_losses}")
|
633 |
+
|
634 |
+
if len(inters) > 0:
|
635 |
+
imageio.mimsave(f"./temp/inters/{name}.gif", inters, 'GIF', duration=0.1)
|
636 |
+
|
637 |
+
return x
|
638 |
|
639 |
|
640 |
class HeunEDMSampler(EDMSampler):
|
sgm/modules/diffusionmodules/sampling_utils.py
CHANGED
@@ -7,7 +7,10 @@ from ...util import append_dims
|
|
7 |
class NoDynamicThresholding:
|
8 |
def __call__(self, uncond, cond, scale):
|
9 |
return uncond + scale * (cond - uncond)
|
10 |
-
|
|
|
|
|
|
|
11 |
|
12 |
def linear_multistep_coeff(order, t, i, j, epsrel=1e-4):
|
13 |
if order - 1 > i:
|
|
|
7 |
class NoDynamicThresholding:
|
8 |
def __call__(self, uncond, cond, scale):
|
9 |
return uncond + scale * (cond - uncond)
|
10 |
+
|
11 |
+
class DualThresholding: # Dual condition CFG (from instructPix2Pix)
|
12 |
+
def __call__(self, uncond_1, uncond_2, cond, scale):
|
13 |
+
return uncond_1 + scale[0] * (uncond_2 - uncond_1) + scale[1] * (cond - uncond_2)
|
14 |
|
15 |
def linear_multistep_coeff(order, t, i, j, epsrel=1e-4):
|
16 |
if order - 1 > i:
|
sgm/modules/diffusionmodules/wrappers.py
CHANGED
@@ -28,8 +28,8 @@ class OpenAIWrapper(IdentityWrapper):
|
|
28 |
return self.diffusion_model(
|
29 |
x,
|
30 |
timesteps=t,
|
31 |
-
|
32 |
-
|
33 |
y=c.get("vector", None),
|
34 |
**kwargs
|
35 |
)
|
|
|
28 |
return self.diffusion_model(
|
29 |
x,
|
30 |
timesteps=t,
|
31 |
+
context=c.get("crossattn", None),
|
32 |
+
add_context=c.get("add_crossattn", None),
|
33 |
y=c.get("vector", None),
|
34 |
**kwargs
|
35 |
)
|
sgm/modules/encoders/modules.py
CHANGED
@@ -14,7 +14,6 @@ from transformers import (
|
|
14 |
ByT5Tokenizer,
|
15 |
CLIPTextModel,
|
16 |
CLIPTokenizer,
|
17 |
-
CLIPVisionModel,
|
18 |
T5EncoderModel,
|
19 |
T5Tokenizer,
|
20 |
)
|
@@ -39,19 +38,18 @@ import pytorch_lightning as pl
|
|
39 |
from torchvision import transforms
|
40 |
from timm.models.vision_transformer import VisionTransformer
|
41 |
from safetensors.torch import load_file as load_safetensors
|
42 |
-
from torchvision.utils import save_image
|
43 |
|
44 |
# disable warning
|
45 |
from transformers import logging
|
46 |
logging.set_verbosity_error()
|
47 |
|
48 |
class AbstractEmbModel(nn.Module):
|
49 |
-
def __init__(self):
|
50 |
super().__init__()
|
51 |
self._is_trainable = None
|
52 |
self._ucg_rate = None
|
53 |
self._input_key = None
|
54 |
-
self.
|
55 |
|
56 |
@property
|
57 |
def is_trainable(self) -> bool:
|
@@ -65,10 +63,6 @@ class AbstractEmbModel(nn.Module):
|
|
65 |
def input_key(self) -> str:
|
66 |
return self._input_key
|
67 |
|
68 |
-
@property
|
69 |
-
def emb_key(self) -> str:
|
70 |
-
return self._emb_key
|
71 |
-
|
72 |
@is_trainable.setter
|
73 |
def is_trainable(self, value: bool):
|
74 |
self._is_trainable = value
|
@@ -81,10 +75,6 @@ class AbstractEmbModel(nn.Module):
|
|
81 |
def input_key(self, value: str):
|
82 |
self._input_key = value
|
83 |
|
84 |
-
@emb_key.setter
|
85 |
-
def emb_key(self, value: str):
|
86 |
-
self._emb_key = value
|
87 |
-
|
88 |
@is_trainable.deleter
|
89 |
def is_trainable(self):
|
90 |
del self._is_trainable
|
@@ -97,13 +87,8 @@ class AbstractEmbModel(nn.Module):
|
|
97 |
def input_key(self):
|
98 |
del self._input_key
|
99 |
|
100 |
-
@emb_key.deleter
|
101 |
-
def emb_key(self):
|
102 |
-
del self._emb_key
|
103 |
-
|
104 |
|
105 |
class GeneralConditioner(nn.Module):
|
106 |
-
|
107 |
OUTPUT_DIM2KEYS = {2: "vector", 3: "crossattn", 4: "concat", 5: "concat"}
|
108 |
KEY2CATDIM = {"vector": 1, "crossattn": 2, "concat": 1}
|
109 |
|
@@ -124,8 +109,7 @@ class GeneralConditioner(nn.Module):
|
|
124 |
f"Initialized embedder #{n}: {embedder.__class__.__name__} "
|
125 |
f"with {count_params(embedder, False)} params. Trainable: {embedder.is_trainable}"
|
126 |
)
|
127 |
-
|
128 |
-
embedder.emb_key = embconfig["emb_key"]
|
129 |
if "input_key" in embconfig:
|
130 |
embedder.input_key = embconfig["input_key"]
|
131 |
elif "input_keys" in embconfig:
|
@@ -172,10 +156,13 @@ class GeneralConditioner(nn.Module):
|
|
172 |
if not isinstance(emb_out, (list, tuple)):
|
173 |
emb_out = [emb_out]
|
174 |
for emb in emb_out:
|
175 |
-
if embedder.
|
176 |
-
out_key =
|
177 |
else:
|
178 |
out_key = self.OUTPUT_DIM2KEYS[emb.dim()]
|
|
|
|
|
|
|
179 |
if embedder.ucg_rate > 0.0 and embedder.legacy_ucg_val is None:
|
180 |
emb = (
|
181 |
expand_dims_like(
|
@@ -217,6 +204,28 @@ class GeneralConditioner(nn.Module):
|
|
217 |
return c, uc
|
218 |
|
219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
class InceptionV3(nn.Module):
|
221 |
"""Wrapper around the https://github.com/mseitzer/pytorch-fid inception
|
222 |
port with an additional squeeze at the end"""
|
@@ -400,6 +409,7 @@ class FrozenCLIPEmbedder(AbstractEmbModel):
|
|
400 |
|
401 |
def freeze(self):
|
402 |
self.transformer = self.transformer.eval()
|
|
|
403 |
for param in self.parameters():
|
404 |
param.requires_grad = False
|
405 |
|
@@ -684,24 +694,24 @@ class FrozenOpenCLIPImageEmbedder(AbstractEmbModel):
|
|
684 |
if self.output_tokens:
|
685 |
z, tokens = z[0], z[1]
|
686 |
z = z.to(image.dtype)
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
if self.unsqueeze_dim:
|
706 |
z = z[:, None, :]
|
707 |
if self.output_tokens:
|
@@ -797,7 +807,7 @@ class FrozenCLIPT5Encoder(AbstractEmbModel):
|
|
797 |
return [clip_z, t5_z]
|
798 |
|
799 |
|
800 |
-
class SpatialRescaler(
|
801 |
def __init__(
|
802 |
self,
|
803 |
n_stages=1,
|
@@ -836,9 +846,6 @@ class SpatialRescaler(AbstractEmbModel):
|
|
836 |
padding=kernel_size // 2,
|
837 |
)
|
838 |
self.wrap_video = wrap_video
|
839 |
-
|
840 |
-
def freeze(self):
|
841 |
-
pass
|
842 |
|
843 |
def forward(self, x):
|
844 |
if self.wrap_video and x.ndim == 5:
|
|
|
14 |
ByT5Tokenizer,
|
15 |
CLIPTextModel,
|
16 |
CLIPTokenizer,
|
|
|
17 |
T5EncoderModel,
|
18 |
T5Tokenizer,
|
19 |
)
|
|
|
38 |
from torchvision import transforms
|
39 |
from timm.models.vision_transformer import VisionTransformer
|
40 |
from safetensors.torch import load_file as load_safetensors
|
|
|
41 |
|
42 |
# disable warning
|
43 |
from transformers import logging
|
44 |
logging.set_verbosity_error()
|
45 |
|
46 |
class AbstractEmbModel(nn.Module):
|
47 |
+
def __init__(self, is_add_embedder=False):
|
48 |
super().__init__()
|
49 |
self._is_trainable = None
|
50 |
self._ucg_rate = None
|
51 |
self._input_key = None
|
52 |
+
self.is_add_embedder = is_add_embedder
|
53 |
|
54 |
@property
|
55 |
def is_trainable(self) -> bool:
|
|
|
63 |
def input_key(self) -> str:
|
64 |
return self._input_key
|
65 |
|
|
|
|
|
|
|
|
|
66 |
@is_trainable.setter
|
67 |
def is_trainable(self, value: bool):
|
68 |
self._is_trainable = value
|
|
|
75 |
def input_key(self, value: str):
|
76 |
self._input_key = value
|
77 |
|
|
|
|
|
|
|
|
|
78 |
@is_trainable.deleter
|
79 |
def is_trainable(self):
|
80 |
del self._is_trainable
|
|
|
87 |
def input_key(self):
|
88 |
del self._input_key
|
89 |
|
|
|
|
|
|
|
|
|
90 |
|
91 |
class GeneralConditioner(nn.Module):
|
|
|
92 |
OUTPUT_DIM2KEYS = {2: "vector", 3: "crossattn", 4: "concat", 5: "concat"}
|
93 |
KEY2CATDIM = {"vector": 1, "crossattn": 2, "concat": 1}
|
94 |
|
|
|
109 |
f"Initialized embedder #{n}: {embedder.__class__.__name__} "
|
110 |
f"with {count_params(embedder, False)} params. Trainable: {embedder.is_trainable}"
|
111 |
)
|
112 |
+
|
|
|
113 |
if "input_key" in embconfig:
|
114 |
embedder.input_key = embconfig["input_key"]
|
115 |
elif "input_keys" in embconfig:
|
|
|
156 |
if not isinstance(emb_out, (list, tuple)):
|
157 |
emb_out = [emb_out]
|
158 |
for emb in emb_out:
|
159 |
+
if embedder.is_add_embedder:
|
160 |
+
out_key = "add_crossattn"
|
161 |
else:
|
162 |
out_key = self.OUTPUT_DIM2KEYS[emb.dim()]
|
163 |
+
if embedder.input_key == "mask":
|
164 |
+
H, W = batch["image"].shape[-2:]
|
165 |
+
emb = nn.functional.interpolate(emb, (H//8, W//8))
|
166 |
if embedder.ucg_rate > 0.0 and embedder.legacy_ucg_val is None:
|
167 |
emb = (
|
168 |
expand_dims_like(
|
|
|
204 |
return c, uc
|
205 |
|
206 |
|
207 |
+
class DualConditioner(GeneralConditioner):
|
208 |
+
|
209 |
+
def get_unconditional_conditioning(
|
210 |
+
self, batch_c, batch_uc_1=None, batch_uc_2=None, force_uc_zero_embeddings=None
|
211 |
+
):
|
212 |
+
if force_uc_zero_embeddings is None:
|
213 |
+
force_uc_zero_embeddings = []
|
214 |
+
ucg_rates = list()
|
215 |
+
for embedder in self.embedders:
|
216 |
+
ucg_rates.append(embedder.ucg_rate)
|
217 |
+
embedder.ucg_rate = 0.0
|
218 |
+
|
219 |
+
c = self(batch_c)
|
220 |
+
uc_1 = self(batch_uc_1, force_uc_zero_embeddings) if batch_uc_1 is not None else None
|
221 |
+
uc_2 = self(batch_uc_2, force_uc_zero_embeddings[:1]) if batch_uc_2 is not None else None
|
222 |
+
|
223 |
+
for embedder, rate in zip(self.embedders, ucg_rates):
|
224 |
+
embedder.ucg_rate = rate
|
225 |
+
|
226 |
+
return c, uc_1, uc_2
|
227 |
+
|
228 |
+
|
229 |
class InceptionV3(nn.Module):
|
230 |
"""Wrapper around the https://github.com/mseitzer/pytorch-fid inception
|
231 |
port with an additional squeeze at the end"""
|
|
|
409 |
|
410 |
def freeze(self):
|
411 |
self.transformer = self.transformer.eval()
|
412 |
+
|
413 |
for param in self.parameters():
|
414 |
param.requires_grad = False
|
415 |
|
|
|
694 |
if self.output_tokens:
|
695 |
z, tokens = z[0], z[1]
|
696 |
z = z.to(image.dtype)
|
697 |
+
if self.ucg_rate > 0.0 and not no_dropout and not (self.max_crops > 0):
|
698 |
+
z = (
|
699 |
+
torch.bernoulli(
|
700 |
+
(1.0 - self.ucg_rate) * torch.ones(z.shape[0], device=z.device)
|
701 |
+
)[:, None]
|
702 |
+
* z
|
703 |
+
)
|
704 |
+
if tokens is not None:
|
705 |
+
tokens = (
|
706 |
+
expand_dims_like(
|
707 |
+
torch.bernoulli(
|
708 |
+
(1.0 - self.ucg_rate)
|
709 |
+
* torch.ones(tokens.shape[0], device=tokens.device)
|
710 |
+
),
|
711 |
+
tokens,
|
712 |
+
)
|
713 |
+
* tokens
|
714 |
+
)
|
715 |
if self.unsqueeze_dim:
|
716 |
z = z[:, None, :]
|
717 |
if self.output_tokens:
|
|
|
807 |
return [clip_z, t5_z]
|
808 |
|
809 |
|
810 |
+
class SpatialRescaler(nn.Module):
|
811 |
def __init__(
|
812 |
self,
|
813 |
n_stages=1,
|
|
|
846 |
padding=kernel_size // 2,
|
847 |
)
|
848 |
self.wrap_video = wrap_video
|
|
|
|
|
|
|
849 |
|
850 |
def forward(self, x):
|
851 |
if self.wrap_video and x.ndim == 5:
|
util.py
CHANGED
@@ -65,14 +65,6 @@ def prepare_batch(cfgs, batch):
|
|
65 |
if isinstance(batch[key], torch.Tensor):
|
66 |
batch[key] = batch[key].to(torch.device("cuda", index=cfgs.gpu))
|
67 |
|
68 |
-
batch_uc =
|
69 |
-
|
70 |
-
if "ntxt" in batch:
|
71 |
-
batch_uc["txt"] = batch["ntxt"]
|
72 |
-
else:
|
73 |
-
batch_uc["txt"] = ["" for _ in range(len(batch["txt"]))]
|
74 |
-
|
75 |
-
if "label" in batch:
|
76 |
-
batch_uc["label"] = ["" for _ in range(len(batch["label"]))]
|
77 |
|
78 |
return batch, batch_uc
|
|
|
65 |
if isinstance(batch[key], torch.Tensor):
|
66 |
batch[key] = batch[key].to(torch.device("cuda", index=cfgs.gpu))
|
67 |
|
68 |
+
batch_uc = batch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
return batch, batch_uc
|