v 2.0
Browse files- .gitignore +1 -2
- app.py +14 -26
- checkpoints/{st-step=100000+la-step=100000-simp.ckpt → st-step=100000+la-step=100000-v2.ckpt} +2 -2
- configs/demo.yaml +2 -3
- configs/test/textdesign_sd_2.yaml +17 -23
- sgm/models/diffusion.py +1 -0
- sgm/modules/__init__.py +1 -1
- sgm/modules/attention.py +62 -622
- sgm/modules/diffusionmodules/__init__.py +1 -1
- sgm/modules/diffusionmodules/guiders.py +1 -29
- sgm/modules/diffusionmodules/loss.py +59 -9
- sgm/modules/diffusionmodules/openaimodel.py +193 -1638
- sgm/modules/diffusionmodules/sampling.py +1 -183
- sgm/modules/diffusionmodules/sampling_utils.py +1 -4
- sgm/modules/diffusionmodules/wrappers.py +2 -2
- sgm/modules/encoders/modules.py +43 -50
- temp/attn_map/attn_map_3.png +0 -0
- temp/attn_map/attn_map_4.png +0 -0
- temp/attn_map/attn_map_5.png +0 -0
- temp/seg_map/seg_3.npy +3 -0
- temp/seg_map/seg_4.npy +3 -0
- temp/seg_map/seg_5.npy +3 -0
- util.py +25 -84
.gitignore
CHANGED
@@ -1,2 +1 @@
|
|
1 |
-
**/__pycache__
|
2 |
-
process.ipynb
|
|
|
1 |
+
**/__pycache__
|
|
app.py
CHANGED
@@ -8,7 +8,7 @@ from omegaconf import OmegaConf
|
|
8 |
from contextlib import nullcontext
|
9 |
from pytorch_lightning import seed_everything
|
10 |
from os.path import join as ospj
|
11 |
-
|
12 |
from util import *
|
13 |
|
14 |
|
@@ -18,30 +18,17 @@ def predict(cfgs, model, sampler, batch):
|
|
18 |
|
19 |
with context():
|
20 |
|
21 |
-
batch, batch_uc_1
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
force_uc_zero_embeddings=cfgs.force_uc_zero_embeddings,
|
29 |
-
)
|
30 |
-
else:
|
31 |
-
c, uc_1 = model.conditioner.get_unconditional_conditioning(
|
32 |
-
batch,
|
33 |
-
batch_uc=batch_uc_1,
|
34 |
-
force_uc_zero_embeddings=cfgs.force_uc_zero_embeddings,
|
35 |
-
)
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
aae_enabled = cfgs.aae_enabled, detailed = cfgs.detailed)
|
41 |
-
else:
|
42 |
-
x = sampler.get_init_noise(cfgs, model, cond=c, batch=batch, uc=uc_1)
|
43 |
-
samples_z = sampler(model, x, cond=c, batch=batch, uc=uc_1, init_step=0,
|
44 |
-
aae_enabled = cfgs.aae_enabled, detailed = cfgs.detailed)
|
45 |
|
46 |
samples_x = model.decode_first_stage(samples_z)
|
47 |
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
@@ -131,6 +118,7 @@ def demo_predict(input_blk, text, num_samples, steps, scale, seed, show_detail):
|
|
131 |
|
132 |
if __name__ == "__main__":
|
133 |
|
|
|
134 |
os.makedirs("./temp/attn_map", exist_ok=True)
|
135 |
os.makedirs("./temp/seg_map", exist_ok=True)
|
136 |
|
@@ -151,7 +139,7 @@ if __name__ == "__main__":
|
|
151 |
UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models
|
152 |
</h1>
|
153 |
<ul style="text-align: center; margin: 0.5rem;">
|
154 |
-
<li style="display: inline-block; margin:auto;"><a href='https://arxiv.org/
|
155 |
<li style="display: inline-block; margin:auto;"><a href='https://github.com/ZYM-PKU/UDiffText'><img src='https://img.shields.io/badge/Code-UDiffText-D0F288'></a></li>
|
156 |
<li style="display: inline-block; margin:auto;"><a href='https://udifftext.github.io'><img src='https://img.shields.io/badge/Project-UDiffText-8ADAB2'></a></li>
|
157 |
</ul>
|
@@ -177,7 +165,7 @@ if __name__ == "__main__":
|
|
177 |
steps = gr.Slider(label="Steps", info ="denoising sampling steps", minimum=1, maximum=200, value=50, step=1)
|
178 |
scale = gr.Slider(label="Guidance Scale", info="the scale of classifier-free guidance (CFG)", minimum=0.0, maximum=10.0, value=4.0, step=0.1)
|
179 |
seed = gr.Slider(label="Seed", info="random seed for noise initialization", minimum=0, maximum=2147483647, step=1, randomize=True)
|
180 |
-
show_detail = gr.Checkbox(label="Show Detail", info="show the additional visualization results", value=
|
181 |
|
182 |
with gr.Column():
|
183 |
|
|
|
8 |
from contextlib import nullcontext
|
9 |
from pytorch_lightning import seed_everything
|
10 |
from os.path import join as ospj
|
11 |
+
|
12 |
from util import *
|
13 |
|
14 |
|
|
|
18 |
|
19 |
with context():
|
20 |
|
21 |
+
batch, batch_uc_1 = prepare_batch(cfgs, batch)
|
22 |
+
|
23 |
+
c, uc_1 = model.conditioner.get_unconditional_conditioning(
|
24 |
+
batch,
|
25 |
+
batch_uc=batch_uc_1,
|
26 |
+
force_uc_zero_embeddings=cfgs.force_uc_zero_embeddings,
|
27 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
x = sampler.get_init_noise(cfgs, model, cond=c, batch=batch, uc=uc_1)
|
30 |
+
samples_z = sampler(model, x, cond=c, batch=batch, uc=uc_1, init_step=0,
|
31 |
+
aae_enabled = cfgs.aae_enabled, detailed = cfgs.detailed)
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
samples_x = model.decode_first_stage(samples_z)
|
34 |
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
118 |
|
119 |
if __name__ == "__main__":
|
120 |
|
121 |
+
os.makedirs("./temp", exist_ok=True)
|
122 |
os.makedirs("./temp/attn_map", exist_ok=True)
|
123 |
os.makedirs("./temp/seg_map", exist_ok=True)
|
124 |
|
|
|
139 |
UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models
|
140 |
</h1>
|
141 |
<ul style="text-align: center; margin: 0.5rem;">
|
142 |
+
<li style="display: inline-block; margin:auto;"><a href='https://arxiv.org/abs/2312.04884'><img src='https://img.shields.io/badge/Arxiv-2312.04884-DF826C'></a></li>
|
143 |
<li style="display: inline-block; margin:auto;"><a href='https://github.com/ZYM-PKU/UDiffText'><img src='https://img.shields.io/badge/Code-UDiffText-D0F288'></a></li>
|
144 |
<li style="display: inline-block; margin:auto;"><a href='https://udifftext.github.io'><img src='https://img.shields.io/badge/Project-UDiffText-8ADAB2'></a></li>
|
145 |
</ul>
|
|
|
165 |
steps = gr.Slider(label="Steps", info ="denoising sampling steps", minimum=1, maximum=200, value=50, step=1)
|
166 |
scale = gr.Slider(label="Guidance Scale", info="the scale of classifier-free guidance (CFG)", minimum=0.0, maximum=10.0, value=4.0, step=0.1)
|
167 |
seed = gr.Slider(label="Seed", info="random seed for noise initialization", minimum=0, maximum=2147483647, step=1, randomize=True)
|
168 |
+
show_detail = gr.Checkbox(label="Show Detail", info="show the additional visualization results", value=False)
|
169 |
|
170 |
with gr.Column():
|
171 |
|
checkpoints/{st-step=100000+la-step=100000-simp.ckpt → st-step=100000+la-step=100000-v2.ckpt}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b87a307ed6e240208b415166e88c0f3e6467ec9330836d70c6d662f423bfbc15
|
3 |
+
size 4173692086
|
configs/demo.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
type: "demo"
|
2 |
|
3 |
# path
|
4 |
-
load_ckpt_path: "./checkpoints/st-step=100000+la-step=100000-
|
5 |
model_cfg_path: "./configs/test/textdesign_sd_2.yaml"
|
6 |
|
7 |
# param
|
@@ -16,8 +16,7 @@ scale: [4.0, 0.0] # content scale, style scale
|
|
16 |
noise_iters: 10
|
17 |
force_uc_zero_embeddings: ["ref", "label"]
|
18 |
aae_enabled: False
|
19 |
-
detailed:
|
20 |
-
dual_conditioner: False
|
21 |
|
22 |
# runtime
|
23 |
steps: 50
|
|
|
1 |
type: "demo"
|
2 |
|
3 |
# path
|
4 |
+
load_ckpt_path: "./checkpoints/st-step=100000+la-step=100000-v2.ckpt"
|
5 |
model_cfg_path: "./configs/test/textdesign_sd_2.yaml"
|
6 |
|
7 |
# param
|
|
|
16 |
noise_iters: 10
|
17 |
force_uc_zero_embeddings: ["ref", "label"]
|
18 |
aae_enabled: False
|
19 |
+
detailed: False
|
|
|
20 |
|
21 |
# runtime
|
22 |
steps: 50
|
configs/test/textdesign_sd_2.yaml
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
model:
|
2 |
target: sgm.models.diffusion.DiffusionEngine
|
3 |
params:
|
|
|
|
|
4 |
input_key: image
|
5 |
scale_factor: 0.18215
|
6 |
disable_first_stage_autocast: True
|
@@ -18,54 +20,45 @@ model:
|
|
18 |
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
19 |
|
20 |
network_config:
|
21 |
-
target: sgm.modules.diffusionmodules.openaimodel.
|
22 |
params:
|
23 |
-
use_checkpoint: False
|
24 |
in_channels: 9
|
25 |
out_channels: 4
|
26 |
ctrl_channels: 0
|
27 |
model_channels: 320
|
28 |
attention_resolutions: [4, 2, 1]
|
29 |
-
|
30 |
-
|
31 |
-
- output_blocks.6.1
|
32 |
num_res_blocks: 2
|
33 |
channel_mult: [1, 2, 4, 4]
|
34 |
num_head_channels: 64
|
35 |
-
use_spatial_transformer: True
|
36 |
use_linear_in_transformer: True
|
37 |
transformer_depth: 1
|
38 |
-
|
39 |
-
add_context_dim: 2048
|
40 |
-
legacy: False
|
41 |
|
42 |
conditioner_config:
|
43 |
target: sgm.modules.GeneralConditioner
|
44 |
params:
|
45 |
emb_models:
|
46 |
-
# crossattn cond
|
47 |
-
# - is_trainable: False
|
48 |
-
# input_key: txt
|
49 |
-
# target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
50 |
-
# params:
|
51 |
-
# arch: ViT-H-14
|
52 |
-
# version: ./checkpoints/encoders/OpenCLIP/ViT-H-14/open_clip_pytorch_model.bin
|
53 |
-
# layer: penultimate
|
54 |
-
# add crossattn cond
|
55 |
- is_trainable: False
|
|
|
|
|
56 |
input_key: label
|
57 |
target: sgm.modules.encoders.modules.LabelEncoder
|
58 |
params:
|
59 |
-
is_add_embedder: True
|
60 |
max_len: 12
|
61 |
emb_dim: 2048
|
62 |
n_heads: 8
|
63 |
n_trans_layers: 12
|
64 |
-
ckpt_path: ./checkpoints/encoders/LabelEncoder/epoch=19-step=7820.ckpt
|
65 |
# concat cond
|
66 |
- is_trainable: False
|
67 |
input_key: mask
|
68 |
-
target: sgm.modules.encoders.modules.
|
|
|
|
|
|
|
69 |
- is_trainable: False
|
70 |
input_key: masked
|
71 |
target: sgm.modules.encoders.modules.LatentEncoder
|
@@ -95,6 +88,7 @@ model:
|
|
95 |
first_stage_config:
|
96 |
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper
|
97 |
params:
|
|
|
98 |
embed_dim: 4
|
99 |
monitor: val/rec_loss
|
100 |
ddconfig:
|
@@ -117,9 +111,9 @@ model:
|
|
117 |
params:
|
118 |
seq_len: 12
|
119 |
kernel_size: 3
|
120 |
-
gaussian_sigma: 0
|
121 |
min_attn_size: 16
|
122 |
-
lambda_local_loss: 0.
|
123 |
lambda_ocr_loss: 0.001
|
124 |
ocr_enabled: False
|
125 |
|
|
|
1 |
model:
|
2 |
target: sgm.models.diffusion.DiffusionEngine
|
3 |
params:
|
4 |
+
opt_keys:
|
5 |
+
- t_attn
|
6 |
input_key: image
|
7 |
scale_factor: 0.18215
|
8 |
disable_first_stage_autocast: True
|
|
|
20 |
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
21 |
|
22 |
network_config:
|
23 |
+
target: sgm.modules.diffusionmodules.openaimodel.UnifiedUNetModel
|
24 |
params:
|
|
|
25 |
in_channels: 9
|
26 |
out_channels: 4
|
27 |
ctrl_channels: 0
|
28 |
model_channels: 320
|
29 |
attention_resolutions: [4, 2, 1]
|
30 |
+
save_attn_type: [t_attn]
|
31 |
+
save_attn_layers: [output_blocks.6.1]
|
|
|
32 |
num_res_blocks: 2
|
33 |
channel_mult: [1, 2, 4, 4]
|
34 |
num_head_channels: 64
|
|
|
35 |
use_linear_in_transformer: True
|
36 |
transformer_depth: 1
|
37 |
+
t_context_dim: 2048
|
|
|
|
|
38 |
|
39 |
conditioner_config:
|
40 |
target: sgm.modules.GeneralConditioner
|
41 |
params:
|
42 |
emb_models:
|
43 |
+
# textual crossattn cond
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
- is_trainable: False
|
45 |
+
emb_key: t_crossattn
|
46 |
+
ucg_rate: 0.1
|
47 |
input_key: label
|
48 |
target: sgm.modules.encoders.modules.LabelEncoder
|
49 |
params:
|
|
|
50 |
max_len: 12
|
51 |
emb_dim: 2048
|
52 |
n_heads: 8
|
53 |
n_trans_layers: 12
|
54 |
+
ckpt_path: ./checkpoints/encoders/LabelEncoder/epoch=19-step=7820.ckpt
|
55 |
# concat cond
|
56 |
- is_trainable: False
|
57 |
input_key: mask
|
58 |
+
target: sgm.modules.encoders.modules.SpatialRescaler
|
59 |
+
params:
|
60 |
+
in_channels: 1
|
61 |
+
multiplier: 0.125
|
62 |
- is_trainable: False
|
63 |
input_key: masked
|
64 |
target: sgm.modules.encoders.modules.LatentEncoder
|
|
|
88 |
first_stage_config:
|
89 |
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper
|
90 |
params:
|
91 |
+
ckpt_path: ./checkpoints/AEs/AE_inpainting_2.safetensors
|
92 |
embed_dim: 4
|
93 |
monitor: val/rec_loss
|
94 |
ddconfig:
|
|
|
111 |
params:
|
112 |
seq_len: 12
|
113 |
kernel_size: 3
|
114 |
+
gaussian_sigma: 1.0
|
115 |
min_attn_size: 16
|
116 |
+
lambda_local_loss: 0.01
|
117 |
lambda_ocr_loss: 0.001
|
118 |
ocr_enabled: False
|
119 |
|
sgm/models/diffusion.py
CHANGED
@@ -5,6 +5,7 @@ import pytorch_lightning as pl
|
|
5 |
import torch
|
6 |
from omegaconf import ListConfig, OmegaConf
|
7 |
from safetensors.torch import load_file as load_safetensors
|
|
|
8 |
|
9 |
from ..modules import UNCONDITIONAL_CONFIG
|
10 |
from ..modules.diffusionmodules.wrappers import OPENAIUNETWRAPPER
|
|
|
5 |
import torch
|
6 |
from omegaconf import ListConfig, OmegaConf
|
7 |
from safetensors.torch import load_file as load_safetensors
|
8 |
+
from torch.optim.lr_scheduler import LambdaLR
|
9 |
|
10 |
from ..modules import UNCONDITIONAL_CONFIG
|
11 |
from ..modules.diffusionmodules.wrappers import OPENAIUNETWRAPPER
|
sgm/modules/__init__.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from .encoders.modules import GeneralConditioner
|
2 |
|
3 |
UNCONDITIONAL_CONFIG = {
|
4 |
"target": "sgm.modules.GeneralConditioner",
|
|
|
1 |
+
from .encoders.modules import GeneralConditioner
|
2 |
|
3 |
UNCONDITIONAL_CONFIG = {
|
4 |
"target": "sgm.modules.GeneralConditioner",
|
sgm/modules/attention.py
CHANGED
@@ -5,53 +5,15 @@ from typing import Any, Optional
|
|
5 |
import torch
|
6 |
import torch.nn.functional as F
|
7 |
from einops import rearrange, repeat
|
8 |
-
from packaging import version
|
9 |
from torch import nn, einsum
|
10 |
|
11 |
-
|
12 |
-
if version.parse(torch.__version__) >= version.parse("2.0.0"):
|
13 |
-
SDP_IS_AVAILABLE = True
|
14 |
-
from torch.backends.cuda import SDPBackend, sdp_kernel
|
15 |
-
|
16 |
-
BACKEND_MAP = {
|
17 |
-
SDPBackend.MATH: {
|
18 |
-
"enable_math": True,
|
19 |
-
"enable_flash": False,
|
20 |
-
"enable_mem_efficient": False,
|
21 |
-
},
|
22 |
-
SDPBackend.FLASH_ATTENTION: {
|
23 |
-
"enable_math": False,
|
24 |
-
"enable_flash": True,
|
25 |
-
"enable_mem_efficient": False,
|
26 |
-
},
|
27 |
-
SDPBackend.EFFICIENT_ATTENTION: {
|
28 |
-
"enable_math": False,
|
29 |
-
"enable_flash": False,
|
30 |
-
"enable_mem_efficient": True,
|
31 |
-
},
|
32 |
-
None: {"enable_math": True, "enable_flash": True, "enable_mem_efficient": True},
|
33 |
-
}
|
34 |
-
else:
|
35 |
-
from contextlib import nullcontext
|
36 |
-
|
37 |
-
SDP_IS_AVAILABLE = False
|
38 |
-
sdp_kernel = nullcontext
|
39 |
-
BACKEND_MAP = {}
|
40 |
-
print(
|
41 |
-
f"No SDP backend available, likely because you are running in pytorch versions < 2.0. In fact, "
|
42 |
-
f"you are using PyTorch {torch.__version__}. You might want to consider upgrading."
|
43 |
-
)
|
44 |
-
|
45 |
try:
|
46 |
import xformers
|
47 |
import xformers.ops
|
48 |
-
|
49 |
XFORMERS_IS_AVAILABLE = True
|
50 |
except:
|
51 |
XFORMERS_IS_AVAILABLE = False
|
52 |
-
print("
|
53 |
-
|
54 |
-
from .diffusionmodules.util import checkpoint
|
55 |
|
56 |
|
57 |
def exists(val):
|
@@ -146,51 +108,6 @@ class LinearAttention(nn.Module):
|
|
146 |
return self.to_out(out)
|
147 |
|
148 |
|
149 |
-
class SpatialSelfAttention(nn.Module):
|
150 |
-
def __init__(self, in_channels):
|
151 |
-
super().__init__()
|
152 |
-
self.in_channels = in_channels
|
153 |
-
|
154 |
-
self.norm = Normalize(in_channels)
|
155 |
-
self.q = torch.nn.Conv2d(
|
156 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
157 |
-
)
|
158 |
-
self.k = torch.nn.Conv2d(
|
159 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
160 |
-
)
|
161 |
-
self.v = torch.nn.Conv2d(
|
162 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
163 |
-
)
|
164 |
-
self.proj_out = torch.nn.Conv2d(
|
165 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
166 |
-
)
|
167 |
-
|
168 |
-
def forward(self, x):
|
169 |
-
h_ = x
|
170 |
-
h_ = self.norm(h_)
|
171 |
-
q = self.q(h_)
|
172 |
-
k = self.k(h_)
|
173 |
-
v = self.v(h_)
|
174 |
-
|
175 |
-
# compute attention
|
176 |
-
b, c, h, w = q.shape
|
177 |
-
q = rearrange(q, "b c h w -> b (h w) c")
|
178 |
-
k = rearrange(k, "b c h w -> b c (h w)")
|
179 |
-
w_ = torch.einsum("bij,bjk->bik", q, k)
|
180 |
-
|
181 |
-
w_ = w_ * (int(c) ** (-0.5))
|
182 |
-
w_ = torch.nn.functional.softmax(w_, dim=2)
|
183 |
-
|
184 |
-
# attend to values
|
185 |
-
v = rearrange(v, "b c h w -> b c (h w)")
|
186 |
-
w_ = rearrange(w_, "b i j -> b j i")
|
187 |
-
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
188 |
-
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
189 |
-
h_ = self.proj_out(h_)
|
190 |
-
|
191 |
-
return x + h_
|
192 |
-
|
193 |
-
|
194 |
class CrossAttention(nn.Module):
|
195 |
def __init__(
|
196 |
self,
|
@@ -198,8 +115,7 @@ class CrossAttention(nn.Module):
|
|
198 |
context_dim=None,
|
199 |
heads=8,
|
200 |
dim_head=64,
|
201 |
-
dropout=0.0
|
202 |
-
backend=None,
|
203 |
):
|
204 |
super().__init__()
|
205 |
inner_dim = dim_head * heads
|
@@ -212,60 +128,38 @@ class CrossAttention(nn.Module):
|
|
212 |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
213 |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
214 |
|
215 |
-
self.to_out = zero_module(
|
216 |
-
nn.
|
217 |
-
|
218 |
-
|
|
|
|
|
219 |
|
220 |
self.attn_map_cache = None
|
221 |
|
222 |
def forward(
|
223 |
self,
|
224 |
x,
|
225 |
-
context=None
|
226 |
-
mask=None,
|
227 |
-
additional_tokens=None,
|
228 |
-
n_times_crossframe_attn_in_self=0,
|
229 |
):
|
230 |
h = self.heads
|
231 |
|
232 |
-
if additional_tokens is not None:
|
233 |
-
# get the number of masked tokens at the beginning of the output sequence
|
234 |
-
n_tokens_to_mask = additional_tokens.shape[1]
|
235 |
-
# add additional token
|
236 |
-
x = torch.cat([additional_tokens, x], dim=1)
|
237 |
-
|
238 |
q = self.to_q(x)
|
239 |
context = default(context, x)
|
240 |
k = self.to_k(context)
|
241 |
v = self.to_v(context)
|
242 |
|
243 |
-
if n_times_crossframe_attn_in_self:
|
244 |
-
# reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439
|
245 |
-
assert x.shape[0] % n_times_crossframe_attn_in_self == 0
|
246 |
-
n_cp = x.shape[0] // n_times_crossframe_attn_in_self
|
247 |
-
k = repeat(
|
248 |
-
k[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
|
249 |
-
)
|
250 |
-
v = repeat(
|
251 |
-
v[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
|
252 |
-
)
|
253 |
-
|
254 |
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
|
255 |
|
256 |
## old
|
257 |
-
|
258 |
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
259 |
del q, k
|
260 |
|
261 |
-
if exists(mask):
|
262 |
-
mask = rearrange(mask, 'b ... -> b (...)')
|
263 |
-
max_neg_value = -torch.finfo(sim.dtype).max
|
264 |
-
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
265 |
-
sim.masked_fill_(~mask, max_neg_value)
|
266 |
-
|
267 |
# attention, what we cannot get enough of
|
268 |
-
|
|
|
|
|
|
|
269 |
|
270 |
# save attn_map
|
271 |
if self.attn_map_cache is not None:
|
@@ -276,20 +170,7 @@ class CrossAttention(nn.Module):
|
|
276 |
|
277 |
out = einsum('b i j, b j d -> b i d', sim, v)
|
278 |
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
|
279 |
-
|
280 |
-
## new
|
281 |
-
# with sdp_kernel(**BACKEND_MAP[self.backend]):
|
282 |
-
# # print("dispatching into backend", self.backend, "q/k/v shape: ", q.shape, k.shape, v.shape)
|
283 |
-
# out = F.scaled_dot_product_attention(
|
284 |
-
# q, k, v, attn_mask=mask
|
285 |
-
# ) # scale is dim_head ** -0.5 per default
|
286 |
-
|
287 |
-
# del q, k, v
|
288 |
-
# out = rearrange(out, "b h n d -> b n (h d)", h=h)
|
289 |
-
|
290 |
-
if additional_tokens is not None:
|
291 |
-
# remove additional token
|
292 |
-
out = out[:, n_tokens_to_mask:]
|
293 |
return self.to_out(out)
|
294 |
|
295 |
|
@@ -382,10 +263,6 @@ class MemoryEfficientCrossAttention(nn.Module):
|
|
382 |
|
383 |
|
384 |
class BasicTransformerBlock(nn.Module):
|
385 |
-
ATTENTION_MODES = {
|
386 |
-
"softmax": CrossAttention, # vanilla attention
|
387 |
-
"softmax-xformers": MemoryEfficientCrossAttention, # ampere
|
388 |
-
}
|
389 |
|
390 |
def __init__(
|
391 |
self,
|
@@ -393,169 +270,78 @@ class BasicTransformerBlock(nn.Module):
|
|
393 |
n_heads,
|
394 |
d_head,
|
395 |
dropout=0.0,
|
396 |
-
|
397 |
-
|
398 |
-
gated_ff=True
|
399 |
-
checkpoint=True,
|
400 |
-
disable_self_attn=False,
|
401 |
-
attn_mode="softmax",
|
402 |
-
sdp_backend=None,
|
403 |
):
|
404 |
super().__init__()
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
f"Attention mode '{attn_mode}' is not available. Falling back to native attention. "
|
409 |
-
f"This is not a problem in Pytorch >= 2.0. FYI, you are running with PyTorch version {torch.__version__}"
|
410 |
-
)
|
411 |
-
attn_mode = "softmax"
|
412 |
-
elif attn_mode == "softmax" and not SDP_IS_AVAILABLE:
|
413 |
-
print(
|
414 |
-
"We do not support vanilla attention anymore, as it is too expensive. Sorry."
|
415 |
-
)
|
416 |
-
if not XFORMERS_IS_AVAILABLE:
|
417 |
-
assert (
|
418 |
-
False
|
419 |
-
), "Please install xformers via e.g. 'pip install xformers==0.0.16'"
|
420 |
-
else:
|
421 |
-
print("Falling back to xformers efficient attention.")
|
422 |
-
attn_mode = "softmax-xformers"
|
423 |
-
attn_cls = self.ATTENTION_MODES[attn_mode]
|
424 |
-
if version.parse(torch.__version__) >= version.parse("2.0.0"):
|
425 |
-
assert sdp_backend is None or isinstance(sdp_backend, SDPBackend)
|
426 |
-
else:
|
427 |
-
assert sdp_backend is None
|
428 |
-
self.disable_self_attn = disable_self_attn
|
429 |
-
self.attn1 = attn_cls(
|
430 |
query_dim=dim,
|
431 |
heads=n_heads,
|
432 |
dim_head=d_head,
|
433 |
dropout=dropout,
|
434 |
-
context_dim=
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
if
|
439 |
-
self.
|
440 |
query_dim=dim,
|
441 |
-
context_dim=
|
442 |
heads=n_heads,
|
443 |
dim_head=d_head,
|
444 |
-
dropout=dropout
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
|
|
|
|
449 |
query_dim=dim,
|
450 |
-
context_dim=
|
451 |
heads=n_heads,
|
452 |
dim_head=d_head,
|
453 |
-
dropout=dropout
|
454 |
-
backend=sdp_backend,
|
455 |
-
) # is self-attn if context is none
|
456 |
-
self.add_norm = nn.LayerNorm(dim)
|
457 |
-
self.norm1 = nn.LayerNorm(dim)
|
458 |
-
self.norm2 = nn.LayerNorm(dim)
|
459 |
-
self.norm3 = nn.LayerNorm(dim)
|
460 |
-
self.checkpoint = checkpoint
|
461 |
-
|
462 |
-
def forward(
|
463 |
-
self, x, context=None, add_context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
|
464 |
-
):
|
465 |
-
kwargs = {"x": x}
|
466 |
-
|
467 |
-
if context is not None:
|
468 |
-
kwargs.update({"context": context})
|
469 |
-
|
470 |
-
if additional_tokens is not None:
|
471 |
-
kwargs.update({"additional_tokens": additional_tokens})
|
472 |
-
|
473 |
-
if n_times_crossframe_attn_in_self:
|
474 |
-
kwargs.update(
|
475 |
-
{"n_times_crossframe_attn_in_self": n_times_crossframe_attn_in_self}
|
476 |
)
|
|
|
477 |
|
478 |
-
|
479 |
-
|
480 |
-
)
|
481 |
|
482 |
-
def
|
483 |
-
self, x, context=None, add_context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
|
484 |
-
):
|
485 |
x = (
|
486 |
self.attn1(
|
487 |
self.norm1(x),
|
488 |
-
context=
|
489 |
-
additional_tokens=additional_tokens,
|
490 |
-
n_times_crossframe_attn_in_self=n_times_crossframe_attn_in_self
|
491 |
-
if not self.disable_self_attn
|
492 |
-
else 0,
|
493 |
)
|
494 |
+ x
|
495 |
)
|
496 |
-
if hasattr(self, "
|
497 |
x = (
|
498 |
-
self.
|
499 |
-
self.
|
|
|
500 |
)
|
501 |
+ x
|
502 |
)
|
503 |
-
if hasattr(self, "
|
504 |
x = (
|
505 |
-
self.
|
506 |
-
self.
|
|
|
507 |
)
|
508 |
+ x
|
509 |
)
|
510 |
-
x = self.ff(self.norm3(x)) + x
|
511 |
-
return x
|
512 |
-
|
513 |
-
|
514 |
-
class BasicTransformerSingleLayerBlock(nn.Module):
|
515 |
-
ATTENTION_MODES = {
|
516 |
-
"softmax": CrossAttention, # vanilla attention
|
517 |
-
"softmax-xformers": MemoryEfficientCrossAttention # on the A100s not quite as fast as the above version
|
518 |
-
# (todo might depend on head_dim, check, falls back to semi-optimized kernels for dim!=[16,32,64,128])
|
519 |
-
}
|
520 |
-
|
521 |
-
def __init__(
|
522 |
-
self,
|
523 |
-
dim,
|
524 |
-
n_heads,
|
525 |
-
d_head,
|
526 |
-
dropout=0.0,
|
527 |
-
context_dim=None,
|
528 |
-
gated_ff=True,
|
529 |
-
checkpoint=True,
|
530 |
-
attn_mode="softmax",
|
531 |
-
):
|
532 |
-
super().__init__()
|
533 |
-
assert attn_mode in self.ATTENTION_MODES
|
534 |
-
attn_cls = self.ATTENTION_MODES[attn_mode]
|
535 |
-
self.attn1 = attn_cls(
|
536 |
-
query_dim=dim,
|
537 |
-
heads=n_heads,
|
538 |
-
dim_head=d_head,
|
539 |
-
dropout=dropout,
|
540 |
-
context_dim=context_dim,
|
541 |
-
)
|
542 |
-
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
543 |
-
self.norm1 = nn.LayerNorm(dim)
|
544 |
-
self.norm2 = nn.LayerNorm(dim)
|
545 |
-
self.checkpoint = checkpoint
|
546 |
|
547 |
-
|
548 |
-
return checkpoint(
|
549 |
-
self._forward, (x, context), self.parameters(), self.checkpoint
|
550 |
-
)
|
551 |
|
552 |
-
def _forward(self, x, context=None):
|
553 |
-
x = self.attn1(self.norm1(x), context=context) + x
|
554 |
-
x = self.ff(self.norm2(x)) + x
|
555 |
return x
|
556 |
|
557 |
|
558 |
-
class
|
559 |
"""
|
560 |
Transformer block for image-like data.
|
561 |
First, project the input (aka embedding)
|
@@ -572,36 +358,12 @@ class SpatialTransformer(nn.Module):
|
|
572 |
d_head,
|
573 |
depth=1,
|
574 |
dropout=0.0,
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
use_linear=False,
|
579 |
-
attn_type="softmax",
|
580 |
-
use_checkpoint=True,
|
581 |
-
# sdp_backend=SDPBackend.FLASH_ATTENTION
|
582 |
-
sdp_backend=None,
|
583 |
):
|
584 |
super().__init__()
|
585 |
-
|
586 |
-
# f"constructing {self.__class__.__name__} of depth {depth} w/ {in_channels} channels and {n_heads} heads"
|
587 |
-
# )
|
588 |
-
from omegaconf import ListConfig
|
589 |
-
|
590 |
-
if exists(context_dim) and not isinstance(context_dim, (list, ListConfig)):
|
591 |
-
context_dim = [context_dim]
|
592 |
-
if exists(context_dim) and isinstance(context_dim, list):
|
593 |
-
if depth != len(context_dim):
|
594 |
-
# print(
|
595 |
-
# f"WARNING: {self.__class__.__name__}: Found context dims {context_dim} of depth {len(context_dim)}, "
|
596 |
-
# f"which does not match the specified 'depth' of {depth}. Setting context_dim to {depth * [context_dim[0]]} now."
|
597 |
-
# )
|
598 |
-
# depth does not match context dims.
|
599 |
-
assert all(
|
600 |
-
map(lambda x: x == context_dim[0], context_dim)
|
601 |
-
), "need homogenous context_dim to match depth automatically"
|
602 |
-
context_dim = depth * [context_dim[0]]
|
603 |
-
elif context_dim is None:
|
604 |
-
context_dim = [None] * depth
|
605 |
self.in_channels = in_channels
|
606 |
inner_dim = n_heads * d_head
|
607 |
self.norm = Normalize(in_channels)
|
@@ -619,12 +381,8 @@ class SpatialTransformer(nn.Module):
|
|
619 |
n_heads,
|
620 |
d_head,
|
621 |
dropout=dropout,
|
622 |
-
|
623 |
-
|
624 |
-
disable_self_attn=disable_self_attn,
|
625 |
-
attn_mode=attn_type,
|
626 |
-
checkpoint=use_checkpoint,
|
627 |
-
sdp_backend=sdp_backend,
|
628 |
)
|
629 |
for d in range(depth)
|
630 |
]
|
@@ -634,14 +392,11 @@ class SpatialTransformer(nn.Module):
|
|
634 |
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
635 |
)
|
636 |
else:
|
637 |
-
# self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
638 |
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
|
639 |
self.use_linear = use_linear
|
640 |
|
641 |
-
def forward(self, x,
|
642 |
-
|
643 |
-
if not isinstance(context, list):
|
644 |
-
context = [context]
|
645 |
b, c, h, w = x.shape
|
646 |
x_in = x
|
647 |
x = self.norm(x)
|
@@ -651,326 +406,11 @@ class SpatialTransformer(nn.Module):
|
|
651 |
if self.use_linear:
|
652 |
x = self.proj_in(x)
|
653 |
for i, block in enumerate(self.transformer_blocks):
|
654 |
-
|
655 |
-
i = 0 # use same context for each block
|
656 |
-
x = block(x, context=context[i], add_context=add_context)
|
657 |
if self.use_linear:
|
658 |
x = self.proj_out(x)
|
659 |
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
660 |
if not self.use_linear:
|
661 |
x = self.proj_out(x)
|
662 |
-
return x + x_in
|
663 |
-
|
664 |
-
|
665 |
-
def benchmark_attn():
|
666 |
-
# Lets define a helpful benchmarking function:
|
667 |
-
# https://pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial.html
|
668 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
669 |
-
import torch.nn.functional as F
|
670 |
-
import torch.utils.benchmark as benchmark
|
671 |
-
|
672 |
-
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
|
673 |
-
t0 = benchmark.Timer(
|
674 |
-
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
|
675 |
-
)
|
676 |
-
return t0.blocked_autorange().mean * 1e6
|
677 |
-
|
678 |
-
# Lets define the hyper-parameters of our input
|
679 |
-
batch_size = 32
|
680 |
-
max_sequence_len = 1024
|
681 |
-
num_heads = 32
|
682 |
-
embed_dimension = 32
|
683 |
-
|
684 |
-
dtype = torch.float16
|
685 |
-
|
686 |
-
query = torch.rand(
|
687 |
-
batch_size,
|
688 |
-
num_heads,
|
689 |
-
max_sequence_len,
|
690 |
-
embed_dimension,
|
691 |
-
device=device,
|
692 |
-
dtype=dtype,
|
693 |
-
)
|
694 |
-
key = torch.rand(
|
695 |
-
batch_size,
|
696 |
-
num_heads,
|
697 |
-
max_sequence_len,
|
698 |
-
embed_dimension,
|
699 |
-
device=device,
|
700 |
-
dtype=dtype,
|
701 |
-
)
|
702 |
-
value = torch.rand(
|
703 |
-
batch_size,
|
704 |
-
num_heads,
|
705 |
-
max_sequence_len,
|
706 |
-
embed_dimension,
|
707 |
-
device=device,
|
708 |
-
dtype=dtype,
|
709 |
-
)
|
710 |
-
|
711 |
-
print(f"q/k/v shape:", query.shape, key.shape, value.shape)
|
712 |
-
|
713 |
-
# Lets explore the speed of each of the 3 implementations
|
714 |
-
from torch.backends.cuda import SDPBackend, sdp_kernel
|
715 |
-
|
716 |
-
# Helpful arguments mapper
|
717 |
-
backend_map = {
|
718 |
-
SDPBackend.MATH: {
|
719 |
-
"enable_math": True,
|
720 |
-
"enable_flash": False,
|
721 |
-
"enable_mem_efficient": False,
|
722 |
-
},
|
723 |
-
SDPBackend.FLASH_ATTENTION: {
|
724 |
-
"enable_math": False,
|
725 |
-
"enable_flash": True,
|
726 |
-
"enable_mem_efficient": False,
|
727 |
-
},
|
728 |
-
SDPBackend.EFFICIENT_ATTENTION: {
|
729 |
-
"enable_math": False,
|
730 |
-
"enable_flash": False,
|
731 |
-
"enable_mem_efficient": True,
|
732 |
-
},
|
733 |
-
}
|
734 |
-
|
735 |
-
from torch.profiler import ProfilerActivity, profile, record_function
|
736 |
-
|
737 |
-
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA]
|
738 |
-
|
739 |
-
print(
|
740 |
-
f"The default implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
741 |
-
)
|
742 |
-
with profile(
|
743 |
-
activities=activities, record_shapes=False, profile_memory=True
|
744 |
-
) as prof:
|
745 |
-
with record_function("Default detailed stats"):
|
746 |
-
for _ in range(25):
|
747 |
-
o = F.scaled_dot_product_attention(query, key, value)
|
748 |
-
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
749 |
-
|
750 |
-
print(
|
751 |
-
f"The math implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
752 |
-
)
|
753 |
-
with sdp_kernel(**backend_map[SDPBackend.MATH]):
|
754 |
-
with profile(
|
755 |
-
activities=activities, record_shapes=False, profile_memory=True
|
756 |
-
) as prof:
|
757 |
-
with record_function("Math implmentation stats"):
|
758 |
-
for _ in range(25):
|
759 |
-
o = F.scaled_dot_product_attention(query, key, value)
|
760 |
-
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
761 |
-
|
762 |
-
with sdp_kernel(**backend_map[SDPBackend.FLASH_ATTENTION]):
|
763 |
-
try:
|
764 |
-
print(
|
765 |
-
f"The flash attention implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
766 |
-
)
|
767 |
-
except RuntimeError:
|
768 |
-
print("FlashAttention is not supported. See warnings for reasons.")
|
769 |
-
with profile(
|
770 |
-
activities=activities, record_shapes=False, profile_memory=True
|
771 |
-
) as prof:
|
772 |
-
with record_function("FlashAttention stats"):
|
773 |
-
for _ in range(25):
|
774 |
-
o = F.scaled_dot_product_attention(query, key, value)
|
775 |
-
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
776 |
-
|
777 |
-
with sdp_kernel(**backend_map[SDPBackend.EFFICIENT_ATTENTION]):
|
778 |
-
try:
|
779 |
-
print(
|
780 |
-
f"The memory efficient implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
781 |
-
)
|
782 |
-
except RuntimeError:
|
783 |
-
print("EfficientAttention is not supported. See warnings for reasons.")
|
784 |
-
with profile(
|
785 |
-
activities=activities, record_shapes=False, profile_memory=True
|
786 |
-
) as prof:
|
787 |
-
with record_function("EfficientAttention stats"):
|
788 |
-
for _ in range(25):
|
789 |
-
o = F.scaled_dot_product_attention(query, key, value)
|
790 |
-
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
791 |
-
|
792 |
-
|
793 |
-
def run_model(model, x, context):
|
794 |
-
return model(x, context)
|
795 |
-
|
796 |
-
|
797 |
-
def benchmark_transformer_blocks():
|
798 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
799 |
-
import torch.utils.benchmark as benchmark
|
800 |
-
|
801 |
-
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
|
802 |
-
t0 = benchmark.Timer(
|
803 |
-
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
|
804 |
-
)
|
805 |
-
return t0.blocked_autorange().mean * 1e6
|
806 |
-
|
807 |
-
checkpoint = True
|
808 |
-
compile = False
|
809 |
-
|
810 |
-
batch_size = 32
|
811 |
-
h, w = 64, 64
|
812 |
-
context_len = 77
|
813 |
-
embed_dimension = 1024
|
814 |
-
context_dim = 1024
|
815 |
-
d_head = 64
|
816 |
-
|
817 |
-
transformer_depth = 4
|
818 |
-
|
819 |
-
n_heads = embed_dimension // d_head
|
820 |
-
|
821 |
-
dtype = torch.float16
|
822 |
-
|
823 |
-
model_native = SpatialTransformer(
|
824 |
-
embed_dimension,
|
825 |
-
n_heads,
|
826 |
-
d_head,
|
827 |
-
context_dim=context_dim,
|
828 |
-
use_linear=True,
|
829 |
-
use_checkpoint=checkpoint,
|
830 |
-
attn_type="softmax",
|
831 |
-
depth=transformer_depth,
|
832 |
-
sdp_backend=SDPBackend.FLASH_ATTENTION,
|
833 |
-
).to(device)
|
834 |
-
model_efficient_attn = SpatialTransformer(
|
835 |
-
embed_dimension,
|
836 |
-
n_heads,
|
837 |
-
d_head,
|
838 |
-
context_dim=context_dim,
|
839 |
-
use_linear=True,
|
840 |
-
depth=transformer_depth,
|
841 |
-
use_checkpoint=checkpoint,
|
842 |
-
attn_type="softmax-xformers",
|
843 |
-
).to(device)
|
844 |
-
if not checkpoint and compile:
|
845 |
-
print("compiling models")
|
846 |
-
model_native = torch.compile(model_native)
|
847 |
-
model_efficient_attn = torch.compile(model_efficient_attn)
|
848 |
-
|
849 |
-
x = torch.rand(batch_size, embed_dimension, h, w, device=device, dtype=dtype)
|
850 |
-
c = torch.rand(batch_size, context_len, context_dim, device=device, dtype=dtype)
|
851 |
-
|
852 |
-
from torch.profiler import ProfilerActivity, profile, record_function
|
853 |
-
|
854 |
-
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA]
|
855 |
-
|
856 |
-
with torch.autocast("cuda"):
|
857 |
-
print(
|
858 |
-
f"The native model runs in {benchmark_torch_function_in_microseconds(model_native.forward, x, c):.3f} microseconds"
|
859 |
-
)
|
860 |
-
print(
|
861 |
-
f"The efficientattn model runs in {benchmark_torch_function_in_microseconds(model_efficient_attn.forward, x, c):.3f} microseconds"
|
862 |
-
)
|
863 |
-
|
864 |
-
print(75 * "+")
|
865 |
-
print("NATIVE")
|
866 |
-
print(75 * "+")
|
867 |
-
torch.cuda.reset_peak_memory_stats()
|
868 |
-
with profile(
|
869 |
-
activities=activities, record_shapes=False, profile_memory=True
|
870 |
-
) as prof:
|
871 |
-
with record_function("NativeAttention stats"):
|
872 |
-
for _ in range(25):
|
873 |
-
model_native(x, c)
|
874 |
-
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
875 |
-
print(torch.cuda.max_memory_allocated() * 1e-9, "GB used by native block")
|
876 |
-
|
877 |
-
print(75 * "+")
|
878 |
-
print("Xformers")
|
879 |
-
print(75 * "+")
|
880 |
-
torch.cuda.reset_peak_memory_stats()
|
881 |
-
with profile(
|
882 |
-
activities=activities, record_shapes=False, profile_memory=True
|
883 |
-
) as prof:
|
884 |
-
with record_function("xformers stats"):
|
885 |
-
for _ in range(25):
|
886 |
-
model_efficient_attn(x, c)
|
887 |
-
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
888 |
-
print(torch.cuda.max_memory_allocated() * 1e-9, "GB used by xformers block")
|
889 |
-
|
890 |
-
|
891 |
-
def test01():
|
892 |
-
# conv1x1 vs linear
|
893 |
-
from ..util import count_params
|
894 |
-
|
895 |
-
conv = nn.Conv2d(3, 32, kernel_size=1).cuda()
|
896 |
-
print(count_params(conv))
|
897 |
-
linear = torch.nn.Linear(3, 32).cuda()
|
898 |
-
print(count_params(linear))
|
899 |
-
|
900 |
-
print(conv.weight.shape)
|
901 |
-
|
902 |
-
# use same initialization
|
903 |
-
linear.weight = torch.nn.Parameter(conv.weight.squeeze(-1).squeeze(-1))
|
904 |
-
linear.bias = torch.nn.Parameter(conv.bias)
|
905 |
-
|
906 |
-
print(linear.weight.shape)
|
907 |
-
|
908 |
-
x = torch.randn(11, 3, 64, 64).cuda()
|
909 |
-
|
910 |
-
xr = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
911 |
-
print(xr.shape)
|
912 |
-
out_linear = linear(xr)
|
913 |
-
print(out_linear.mean(), out_linear.shape)
|
914 |
-
|
915 |
-
out_conv = conv(x)
|
916 |
-
print(out_conv.mean(), out_conv.shape)
|
917 |
-
print("done with test01.\n")
|
918 |
-
|
919 |
-
|
920 |
-
def test02():
|
921 |
-
# try cosine flash attention
|
922 |
-
import time
|
923 |
-
|
924 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
925 |
-
torch.backends.cudnn.allow_tf32 = True
|
926 |
-
torch.backends.cudnn.benchmark = True
|
927 |
-
print("testing cosine flash attention...")
|
928 |
-
DIM = 1024
|
929 |
-
SEQLEN = 4096
|
930 |
-
BS = 16
|
931 |
-
|
932 |
-
print(" softmax (vanilla) first...")
|
933 |
-
model = BasicTransformerBlock(
|
934 |
-
dim=DIM,
|
935 |
-
n_heads=16,
|
936 |
-
d_head=64,
|
937 |
-
dropout=0.0,
|
938 |
-
context_dim=None,
|
939 |
-
attn_mode="softmax",
|
940 |
-
).cuda()
|
941 |
-
try:
|
942 |
-
x = torch.randn(BS, SEQLEN, DIM).cuda()
|
943 |
-
tic = time.time()
|
944 |
-
y = model(x)
|
945 |
-
toc = time.time()
|
946 |
-
print(y.shape, toc - tic)
|
947 |
-
except RuntimeError as e:
|
948 |
-
# likely oom
|
949 |
-
print(str(e))
|
950 |
-
|
951 |
-
print("\n now flash-cosine...")
|
952 |
-
model = BasicTransformerBlock(
|
953 |
-
dim=DIM,
|
954 |
-
n_heads=16,
|
955 |
-
d_head=64,
|
956 |
-
dropout=0.0,
|
957 |
-
context_dim=None,
|
958 |
-
attn_mode="flash-cosine",
|
959 |
-
).cuda()
|
960 |
-
x = torch.randn(BS, SEQLEN, DIM).cuda()
|
961 |
-
tic = time.time()
|
962 |
-
y = model(x)
|
963 |
-
toc = time.time()
|
964 |
-
print(y.shape, toc - tic)
|
965 |
-
print("done with test02.\n")
|
966 |
-
|
967 |
-
|
968 |
-
if __name__ == "__main__":
|
969 |
-
# test01()
|
970 |
-
# test02()
|
971 |
-
# test03()
|
972 |
-
|
973 |
-
# benchmark_attn()
|
974 |
-
benchmark_transformer_blocks()
|
975 |
|
976 |
-
|
|
|
5 |
import torch
|
6 |
import torch.nn.functional as F
|
7 |
from einops import rearrange, repeat
|
|
|
8 |
from torch import nn, einsum
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
try:
|
11 |
import xformers
|
12 |
import xformers.ops
|
|
|
13 |
XFORMERS_IS_AVAILABLE = True
|
14 |
except:
|
15 |
XFORMERS_IS_AVAILABLE = False
|
16 |
+
print("No module 'xformers'.")
|
|
|
|
|
17 |
|
18 |
|
19 |
def exists(val):
|
|
|
108 |
return self.to_out(out)
|
109 |
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
class CrossAttention(nn.Module):
|
112 |
def __init__(
|
113 |
self,
|
|
|
115 |
context_dim=None,
|
116 |
heads=8,
|
117 |
dim_head=64,
|
118 |
+
dropout=0.0
|
|
|
119 |
):
|
120 |
super().__init__()
|
121 |
inner_dim = dim_head * heads
|
|
|
128 |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
129 |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
130 |
|
131 |
+
self.to_out = zero_module(
|
132 |
+
nn.Sequential(
|
133 |
+
nn.Linear(inner_dim, query_dim),
|
134 |
+
nn.Dropout(dropout)
|
135 |
+
)
|
136 |
+
)
|
137 |
|
138 |
self.attn_map_cache = None
|
139 |
|
140 |
def forward(
|
141 |
self,
|
142 |
x,
|
143 |
+
context=None
|
|
|
|
|
|
|
144 |
):
|
145 |
h = self.heads
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
q = self.to_q(x)
|
148 |
context = default(context, x)
|
149 |
k = self.to_k(context)
|
150 |
v = self.to_v(context)
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
|
153 |
|
154 |
## old
|
|
|
155 |
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
156 |
del q, k
|
157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
# attention, what we cannot get enough of
|
159 |
+
if sim.shape[-1] > 1:
|
160 |
+
sim = sim.softmax(dim=-1) # softmax on token dim
|
161 |
+
else:
|
162 |
+
sim = sim.sigmoid() # sigmoid on pixel dim
|
163 |
|
164 |
# save attn_map
|
165 |
if self.attn_map_cache is not None:
|
|
|
170 |
|
171 |
out = einsum('b i j, b j d -> b i d', sim, v)
|
172 |
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
|
173 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
return self.to_out(out)
|
175 |
|
176 |
|
|
|
263 |
|
264 |
|
265 |
class BasicTransformerBlock(nn.Module):
|
|
|
|
|
|
|
|
|
266 |
|
267 |
def __init__(
|
268 |
self,
|
|
|
270 |
n_heads,
|
271 |
d_head,
|
272 |
dropout=0.0,
|
273 |
+
t_context_dim=None,
|
274 |
+
v_context_dim=None,
|
275 |
+
gated_ff=True
|
|
|
|
|
|
|
|
|
276 |
):
|
277 |
super().__init__()
|
278 |
+
|
279 |
+
# self-attention
|
280 |
+
self.attn1 = MemoryEfficientCrossAttention(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
query_dim=dim,
|
282 |
heads=n_heads,
|
283 |
dim_head=d_head,
|
284 |
dropout=dropout,
|
285 |
+
context_dim=None
|
286 |
+
)
|
287 |
+
|
288 |
+
# textual cross-attention
|
289 |
+
if t_context_dim is not None and t_context_dim > 0:
|
290 |
+
self.t_attn = CrossAttention(
|
291 |
query_dim=dim,
|
292 |
+
context_dim=t_context_dim,
|
293 |
heads=n_heads,
|
294 |
dim_head=d_head,
|
295 |
+
dropout=dropout
|
296 |
+
)
|
297 |
+
self.t_norm = nn.LayerNorm(dim)
|
298 |
+
|
299 |
+
# visual cross-attention
|
300 |
+
if v_context_dim is not None and v_context_dim > 0:
|
301 |
+
self.v_attn = CrossAttention(
|
302 |
query_dim=dim,
|
303 |
+
context_dim=v_context_dim,
|
304 |
heads=n_heads,
|
305 |
dim_head=d_head,
|
306 |
+
dropout=dropout
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
)
|
308 |
+
self.v_norm = nn.LayerNorm(dim)
|
309 |
|
310 |
+
self.norm1 = nn.LayerNorm(dim)
|
311 |
+
self.norm3 = nn.LayerNorm(dim)
|
312 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
313 |
|
314 |
+
def forward(self, x, t_context=None, v_context=None):
|
|
|
|
|
315 |
x = (
|
316 |
self.attn1(
|
317 |
self.norm1(x),
|
318 |
+
context=None
|
|
|
|
|
|
|
|
|
319 |
)
|
320 |
+ x
|
321 |
)
|
322 |
+
if hasattr(self, "t_attn"):
|
323 |
x = (
|
324 |
+
self.t_attn(
|
325 |
+
self.t_norm(x),
|
326 |
+
context=t_context
|
327 |
)
|
328 |
+ x
|
329 |
)
|
330 |
+
if hasattr(self, "v_attn"):
|
331 |
x = (
|
332 |
+
self.v_attn(
|
333 |
+
self.v_norm(x),
|
334 |
+
context=v_context
|
335 |
)
|
336 |
+ x
|
337 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
+
x = self.ff(self.norm3(x)) + x
|
|
|
|
|
|
|
340 |
|
|
|
|
|
|
|
341 |
return x
|
342 |
|
343 |
|
344 |
+
class SpatialTransformer(nn.Module):
|
345 |
"""
|
346 |
Transformer block for image-like data.
|
347 |
First, project the input (aka embedding)
|
|
|
358 |
d_head,
|
359 |
depth=1,
|
360 |
dropout=0.0,
|
361 |
+
t_context_dim=None,
|
362 |
+
v_context_dim=None,
|
363 |
+
use_linear=False
|
|
|
|
|
|
|
|
|
|
|
364 |
):
|
365 |
super().__init__()
|
366 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
self.in_channels = in_channels
|
368 |
inner_dim = n_heads * d_head
|
369 |
self.norm = Normalize(in_channels)
|
|
|
381 |
n_heads,
|
382 |
d_head,
|
383 |
dropout=dropout,
|
384 |
+
t_context_dim=t_context_dim,
|
385 |
+
v_context_dim=v_context_dim
|
|
|
|
|
|
|
|
|
386 |
)
|
387 |
for d in range(depth)
|
388 |
]
|
|
|
392 |
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
393 |
)
|
394 |
else:
|
|
|
395 |
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
|
396 |
self.use_linear = use_linear
|
397 |
|
398 |
+
def forward(self, x, t_context=None, v_context=None):
|
399 |
+
|
|
|
|
|
400 |
b, c, h, w = x.shape
|
401 |
x_in = x
|
402 |
x = self.norm(x)
|
|
|
406 |
if self.use_linear:
|
407 |
x = self.proj_in(x)
|
408 |
for i, block in enumerate(self.transformer_blocks):
|
409 |
+
x = block(x, t_context=t_context, v_context=v_context)
|
|
|
|
|
410 |
if self.use_linear:
|
411 |
x = self.proj_out(x)
|
412 |
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
413 |
if not self.use_linear:
|
414 |
x = self.proj_out(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
|
416 |
+
return x + x_in
|
sgm/modules/diffusionmodules/__init__.py
CHANGED
@@ -2,6 +2,6 @@ from .denoiser import Denoiser
|
|
2 |
from .discretizer import Discretization
|
3 |
from .loss import StandardDiffusionLoss
|
4 |
from .model import Model, Encoder, Decoder
|
5 |
-
from .openaimodel import
|
6 |
from .sampling import BaseDiffusionSampler
|
7 |
from .wrappers import OpenAIWrapper
|
|
|
2 |
from .discretizer import Discretization
|
3 |
from .loss import StandardDiffusionLoss
|
4 |
from .model import Model, Encoder, Decoder
|
5 |
+
from .openaimodel import UnifiedUNetModel
|
6 |
from .sampling import BaseDiffusionSampler
|
7 |
from .wrappers import OpenAIWrapper
|
sgm/modules/diffusionmodules/guiders.py
CHANGED
@@ -32,7 +32,7 @@ class VanillaCFG:
|
|
32 |
c_out = dict()
|
33 |
|
34 |
for k in c:
|
35 |
-
if k in ["vector", "
|
36 |
c_out[k] = torch.cat((uc[k], c[k]), 0)
|
37 |
else:
|
38 |
assert c[k] == uc[k]
|
@@ -40,34 +40,6 @@ class VanillaCFG:
|
|
40 |
return torch.cat([x] * 2), torch.cat([s] * 2), c_out
|
41 |
|
42 |
|
43 |
-
class DualCFG:
|
44 |
-
|
45 |
-
def __init__(self, scale):
|
46 |
-
self.scale = scale
|
47 |
-
self.dyn_thresh = instantiate_from_config(
|
48 |
-
{
|
49 |
-
"target": "sgm.modules.diffusionmodules.sampling_utils.DualThresholding"
|
50 |
-
},
|
51 |
-
)
|
52 |
-
|
53 |
-
def __call__(self, x, sigma):
|
54 |
-
x_u_1, x_u_2, x_c = x.chunk(3)
|
55 |
-
x_pred = self.dyn_thresh(x_u_1, x_u_2, x_c, self.scale)
|
56 |
-
return x_pred
|
57 |
-
|
58 |
-
def prepare_inputs(self, x, s, c, uc_1, uc_2):
|
59 |
-
c_out = dict()
|
60 |
-
|
61 |
-
for k in c:
|
62 |
-
if k in ["vector", "crossattn", "concat", "add_crossattn"]:
|
63 |
-
c_out[k] = torch.cat((uc_1[k], uc_2[k], c[k]), 0)
|
64 |
-
else:
|
65 |
-
assert c[k] == uc_1[k]
|
66 |
-
c_out[k] = c[k]
|
67 |
-
return torch.cat([x] * 3), torch.cat([s] * 3), c_out
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
class IdentityGuider:
|
72 |
def __call__(self, x, sigma):
|
73 |
return x
|
|
|
32 |
c_out = dict()
|
33 |
|
34 |
for k in c:
|
35 |
+
if k in ["vector", "t_crossattn", "v_crossattn", "concat"]:
|
36 |
c_out[k] = torch.cat((uc[k], c[k]), 0)
|
37 |
else:
|
38 |
assert c[k] == uc[k]
|
|
|
40 |
return torch.cat([x] * 2), torch.cat([s] * 2), c_out
|
41 |
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
class IdentityGuider:
|
44 |
def __call__(self, x, sigma):
|
45 |
return x
|
sgm/modules/diffusionmodules/loss.py
CHANGED
@@ -4,7 +4,6 @@ import torch
|
|
4 |
import torch.nn as nn
|
5 |
import torch.nn.functional as F
|
6 |
from omegaconf import ListConfig
|
7 |
-
# from taming.modules.losses.lpips import LPIPS
|
8 |
from torchvision.utils import save_image
|
9 |
from ...util import append_dims, instantiate_from_config
|
10 |
|
@@ -19,16 +18,13 @@ class StandardDiffusionLoss(nn.Module):
|
|
19 |
):
|
20 |
super().__init__()
|
21 |
|
22 |
-
assert type in ["l2", "l1"
|
23 |
|
24 |
self.sigma_sampler = instantiate_from_config(sigma_sampler_config)
|
25 |
|
26 |
self.type = type
|
27 |
self.offset_noise_level = offset_noise_level
|
28 |
|
29 |
-
# if type == "lpips":
|
30 |
-
# self.lpips = LPIPS().eval()
|
31 |
-
|
32 |
if not batch2model_keys:
|
33 |
batch2model_keys = []
|
34 |
|
@@ -70,9 +66,6 @@ class StandardDiffusionLoss(nn.Module):
|
|
70 |
return torch.mean(
|
71 |
(w * (model_output - target).abs()).reshape(target.shape[0], -1), 1
|
72 |
)
|
73 |
-
elif self.type == "lpips":
|
74 |
-
loss = self.lpips(model_output, target).reshape(-1)
|
75 |
-
return loss
|
76 |
|
77 |
|
78 |
class FullLoss(StandardDiffusionLoss):
|
@@ -85,7 +78,9 @@ class FullLoss(StandardDiffusionLoss):
|
|
85 |
min_attn_size=16,
|
86 |
lambda_local_loss=0.0,
|
87 |
lambda_ocr_loss=0.0,
|
|
|
88 |
ocr_enabled = False,
|
|
|
89 |
predictor_config = None,
|
90 |
*args, **kwarg
|
91 |
):
|
@@ -98,7 +93,9 @@ class FullLoss(StandardDiffusionLoss):
|
|
98 |
self.min_attn_size = min_attn_size
|
99 |
self.lambda_local_loss = lambda_local_loss
|
100 |
self.lambda_ocr_loss = lambda_ocr_loss
|
|
|
101 |
|
|
|
102 |
self.ocr_enabled = ocr_enabled
|
103 |
if ocr_enabled:
|
104 |
self.predictor = instantiate_from_config(predictor_config)
|
@@ -155,9 +152,15 @@ class FullLoss(StandardDiffusionLoss):
|
|
155 |
ocr_loss = self.get_ocr_loss(model_output, batch["r_bbox"], batch["label"], first_stage_model, scaler)
|
156 |
ocr_loss = ocr_loss.mean()
|
157 |
|
|
|
|
|
|
|
|
|
158 |
loss = diff_loss + self.lambda_local_loss * local_loss
|
159 |
if self.ocr_enabled:
|
160 |
loss += self.lambda_ocr_loss * ocr_loss
|
|
|
|
|
161 |
|
162 |
loss_dict = {
|
163 |
"loss/diff_loss": diff_loss,
|
@@ -167,6 +170,8 @@ class FullLoss(StandardDiffusionLoss):
|
|
167 |
|
168 |
if self.ocr_enabled:
|
169 |
loss_dict["loss/ocr_loss"] = ocr_loss
|
|
|
|
|
170 |
|
171 |
return loss, loss_dict
|
172 |
|
@@ -191,6 +196,9 @@ class FullLoss(StandardDiffusionLoss):
|
|
191 |
|
192 |
for item in attn_map_cache:
|
193 |
|
|
|
|
|
|
|
194 |
heads = item["heads"]
|
195 |
size = item["size"]
|
196 |
attn_map = item["attn_map"]
|
@@ -233,6 +241,9 @@ class FullLoss(StandardDiffusionLoss):
|
|
233 |
|
234 |
for item in attn_map_cache:
|
235 |
|
|
|
|
|
|
|
236 |
heads = item["heads"]
|
237 |
size = item["size"]
|
238 |
attn_map = item["attn_map"]
|
@@ -241,7 +252,7 @@ class FullLoss(StandardDiffusionLoss):
|
|
241 |
|
242 |
seg_l = seg_mask.shape[1]
|
243 |
|
244 |
-
bh, n, l = attn_map.shape # bh: batch size * heads / n
|
245 |
attn_map = attn_map.reshape((-1, heads, n, l)) # b, h, n, l
|
246 |
|
247 |
assert seg_l <= l
|
@@ -272,4 +283,43 @@ class FullLoss(StandardDiffusionLoss):
|
|
272 |
|
273 |
loss = loss / count
|
274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
return loss
|
|
|
4 |
import torch.nn as nn
|
5 |
import torch.nn.functional as F
|
6 |
from omegaconf import ListConfig
|
|
|
7 |
from torchvision.utils import save_image
|
8 |
from ...util import append_dims, instantiate_from_config
|
9 |
|
|
|
18 |
):
|
19 |
super().__init__()
|
20 |
|
21 |
+
assert type in ["l2", "l1"]
|
22 |
|
23 |
self.sigma_sampler = instantiate_from_config(sigma_sampler_config)
|
24 |
|
25 |
self.type = type
|
26 |
self.offset_noise_level = offset_noise_level
|
27 |
|
|
|
|
|
|
|
28 |
if not batch2model_keys:
|
29 |
batch2model_keys = []
|
30 |
|
|
|
66 |
return torch.mean(
|
67 |
(w * (model_output - target).abs()).reshape(target.shape[0], -1), 1
|
68 |
)
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
class FullLoss(StandardDiffusionLoss):
|
|
|
78 |
min_attn_size=16,
|
79 |
lambda_local_loss=0.0,
|
80 |
lambda_ocr_loss=0.0,
|
81 |
+
lambda_style_loss=0.0,
|
82 |
ocr_enabled = False,
|
83 |
+
style_enabled = False,
|
84 |
predictor_config = None,
|
85 |
*args, **kwarg
|
86 |
):
|
|
|
93 |
self.min_attn_size = min_attn_size
|
94 |
self.lambda_local_loss = lambda_local_loss
|
95 |
self.lambda_ocr_loss = lambda_ocr_loss
|
96 |
+
self.lambda_style_loss = lambda_style_loss
|
97 |
|
98 |
+
self.style_enabled = style_enabled
|
99 |
self.ocr_enabled = ocr_enabled
|
100 |
if ocr_enabled:
|
101 |
self.predictor = instantiate_from_config(predictor_config)
|
|
|
152 |
ocr_loss = self.get_ocr_loss(model_output, batch["r_bbox"], batch["label"], first_stage_model, scaler)
|
153 |
ocr_loss = ocr_loss.mean()
|
154 |
|
155 |
+
if self.style_enabled:
|
156 |
+
style_loss = self.get_style_local_loss(network.diffusion_model.attn_map_cache, batch["mask"])
|
157 |
+
style_loss = style_loss.mean()
|
158 |
+
|
159 |
loss = diff_loss + self.lambda_local_loss * local_loss
|
160 |
if self.ocr_enabled:
|
161 |
loss += self.lambda_ocr_loss * ocr_loss
|
162 |
+
if self.style_enabled:
|
163 |
+
loss += self.lambda_style_loss * style_loss
|
164 |
|
165 |
loss_dict = {
|
166 |
"loss/diff_loss": diff_loss,
|
|
|
170 |
|
171 |
if self.ocr_enabled:
|
172 |
loss_dict["loss/ocr_loss"] = ocr_loss
|
173 |
+
if self.style_enabled:
|
174 |
+
loss_dict["loss/style_loss"] = style_loss
|
175 |
|
176 |
return loss, loss_dict
|
177 |
|
|
|
196 |
|
197 |
for item in attn_map_cache:
|
198 |
|
199 |
+
name = item["name"]
|
200 |
+
if not name.endswith("t_attn"): continue
|
201 |
+
|
202 |
heads = item["heads"]
|
203 |
size = item["size"]
|
204 |
attn_map = item["attn_map"]
|
|
|
241 |
|
242 |
for item in attn_map_cache:
|
243 |
|
244 |
+
name = item["name"]
|
245 |
+
if not name.endswith("t_attn"): continue
|
246 |
+
|
247 |
heads = item["heads"]
|
248 |
size = item["size"]
|
249 |
attn_map = item["attn_map"]
|
|
|
252 |
|
253 |
seg_l = seg_mask.shape[1]
|
254 |
|
255 |
+
bh, n, l = attn_map.shape # bh: batch size * heads / n: pixel length(h*w) / l: token length
|
256 |
attn_map = attn_map.reshape((-1, heads, n, l)) # b, h, n, l
|
257 |
|
258 |
assert seg_l <= l
|
|
|
283 |
|
284 |
loss = loss / count
|
285 |
|
286 |
+
return loss
|
287 |
+
|
288 |
+
def get_style_local_loss(self, attn_map_cache, mask):
|
289 |
+
|
290 |
+
loss = 0
|
291 |
+
count = 0
|
292 |
+
|
293 |
+
for item in attn_map_cache:
|
294 |
+
|
295 |
+
name = item["name"]
|
296 |
+
if not name.endswith("v_attn"): continue
|
297 |
+
|
298 |
+
heads = item["heads"]
|
299 |
+
size = item["size"]
|
300 |
+
attn_map = item["attn_map"]
|
301 |
+
|
302 |
+
if size < self.min_attn_size: continue
|
303 |
+
|
304 |
+
bh, n, l = attn_map.shape # bh: batch size * heads / n: pixel length(h*w) / l: token length
|
305 |
+
attn_map = attn_map.reshape((-1, heads, n, l)) # b, h, n, l
|
306 |
+
attn_map = attn_map.permute(0, 1, 3, 2) # b, h, l, n
|
307 |
+
attn_map = attn_map.mean(dim = 1) # b, l, n
|
308 |
+
|
309 |
+
mask_map = F.interpolate(mask, (size, size))
|
310 |
+
mask_map = mask_map.reshape((-1, l, n)) # b, l, n
|
311 |
+
n_mask_map = 1 - mask_map
|
312 |
+
|
313 |
+
p_loss = (mask_map * attn_map).sum(dim = -1) / (mask_map.sum(dim = -1) + 1e-5) # b, l
|
314 |
+
n_loss = (n_mask_map * attn_map).sum(dim = -1) / (n_mask_map.sum(dim = -1) + 1e-5) # b, l
|
315 |
+
|
316 |
+
p_loss = p_loss.mean(dim = -1)
|
317 |
+
n_loss = n_loss.mean(dim = -1)
|
318 |
+
|
319 |
+
f_loss = n_loss - p_loss # b,
|
320 |
+
loss += f_loss
|
321 |
+
count += 1
|
322 |
+
|
323 |
+
loss = loss / count
|
324 |
+
|
325 |
return loss
|
sgm/modules/diffusionmodules/openaimodel.py
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
-
import math
|
2 |
from abc import abstractmethod
|
3 |
-
from functools import partial
|
4 |
from typing import Iterable
|
5 |
|
6 |
import numpy as np
|
@@ -12,7 +10,6 @@ from einops import rearrange
|
|
12 |
from ...modules.attention import SpatialTransformer
|
13 |
from ...modules.diffusionmodules.util import (
|
14 |
avg_pool_nd,
|
15 |
-
checkpoint,
|
16 |
conv_nd,
|
17 |
linear,
|
18 |
normalization,
|
@@ -22,47 +19,14 @@ from ...modules.diffusionmodules.util import (
|
|
22 |
from ...util import default, exists
|
23 |
|
24 |
|
25 |
-
|
26 |
-
def
|
27 |
-
pass
|
28 |
-
|
29 |
-
|
30 |
-
def convert_module_to_f32(x):
|
31 |
-
pass
|
32 |
-
|
33 |
-
|
34 |
-
## go
|
35 |
-
class AttentionPool2d(nn.Module):
|
36 |
-
"""
|
37 |
-
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
38 |
-
"""
|
39 |
-
|
40 |
-
def __init__(
|
41 |
-
self,
|
42 |
-
spacial_dim: int,
|
43 |
-
embed_dim: int,
|
44 |
-
num_heads_channels: int,
|
45 |
-
output_dim: int = None,
|
46 |
-
):
|
47 |
super().__init__()
|
48 |
-
self.
|
49 |
-
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5
|
50 |
-
)
|
51 |
-
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
52 |
-
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
53 |
-
self.num_heads = embed_dim // num_heads_channels
|
54 |
-
self.attention = QKVAttention(self.num_heads)
|
55 |
-
|
56 |
-
def forward(self, x):
|
57 |
-
b, c, *_spatial = x.shape
|
58 |
-
x = x.reshape(b, c, -1) # NC(HW)
|
59 |
-
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
60 |
-
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
61 |
-
x = self.qkv_proj(x)
|
62 |
-
x = self.attention(x)
|
63 |
-
x = self.c_proj(x)
|
64 |
-
return x[:, :, 0]
|
65 |
|
|
|
|
|
|
|
66 |
|
67 |
class TimestepBlock(nn.Module):
|
68 |
"""
|
@@ -86,19 +50,14 @@ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
|
86 |
self,
|
87 |
x,
|
88 |
emb,
|
89 |
-
|
90 |
-
|
91 |
-
skip_time_mix=False,
|
92 |
-
time_context=None,
|
93 |
-
num_video_frames=None,
|
94 |
-
time_context_cat=None,
|
95 |
-
use_crossframe_attention_in_spatial_layers=False,
|
96 |
):
|
97 |
for layer in self:
|
98 |
if isinstance(layer, TimestepBlock):
|
99 |
x = layer(x, emb)
|
100 |
elif isinstance(layer, SpatialTransformer):
|
101 |
-
x = layer(x,
|
102 |
else:
|
103 |
x = layer(x)
|
104 |
return x
|
@@ -143,22 +102,6 @@ class Upsample(nn.Module):
|
|
143 |
return x
|
144 |
|
145 |
|
146 |
-
class TransposedUpsample(nn.Module):
|
147 |
-
"Learned 2x upsampling without padding"
|
148 |
-
|
149 |
-
def __init__(self, channels, out_channels=None, ks=5):
|
150 |
-
super().__init__()
|
151 |
-
self.channels = channels
|
152 |
-
self.out_channels = out_channels or channels
|
153 |
-
|
154 |
-
self.up = nn.ConvTranspose2d(
|
155 |
-
self.channels, self.out_channels, kernel_size=ks, stride=2
|
156 |
-
)
|
157 |
-
|
158 |
-
def forward(self, x):
|
159 |
-
return self.up(x)
|
160 |
-
|
161 |
-
|
162 |
class Downsample(nn.Module):
|
163 |
"""
|
164 |
A downsampling layer with an optional convolution.
|
@@ -206,17 +149,6 @@ class Downsample(nn.Module):
|
|
206 |
class ResBlock(TimestepBlock):
|
207 |
"""
|
208 |
A residual block that can optionally change the number of channels.
|
209 |
-
:param channels: the number of input channels.
|
210 |
-
:param emb_channels: the number of timestep embedding channels.
|
211 |
-
:param dropout: the rate of dropout.
|
212 |
-
:param out_channels: if specified, the number of out channels.
|
213 |
-
:param use_conv: if True and out_channels is specified, use a spatial
|
214 |
-
convolution instead of a smaller 1x1 convolution to change the
|
215 |
-
channels in the skip connection.
|
216 |
-
:param dims: determines if the signal is 1D, 2D, or 3D.
|
217 |
-
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
218 |
-
:param up: if True, use this block for upsampling.
|
219 |
-
:param down: if True, use this block for downsampling.
|
220 |
"""
|
221 |
|
222 |
def __init__(
|
@@ -228,12 +160,11 @@ class ResBlock(TimestepBlock):
|
|
228 |
use_conv=False,
|
229 |
use_scale_shift_norm=False,
|
230 |
dims=2,
|
231 |
-
use_checkpoint=False,
|
232 |
up=False,
|
233 |
down=False,
|
234 |
kernel_size=3,
|
235 |
exchange_temb_dims=False,
|
236 |
-
skip_t_emb=False
|
237 |
):
|
238 |
super().__init__()
|
239 |
self.channels = channels
|
@@ -241,7 +172,6 @@ class ResBlock(TimestepBlock):
|
|
241 |
self.dropout = dropout
|
242 |
self.out_channels = out_channels or channels
|
243 |
self.use_conv = use_conv
|
244 |
-
self.use_checkpoint = use_checkpoint
|
245 |
self.use_scale_shift_norm = use_scale_shift_norm
|
246 |
self.exchange_temb_dims = exchange_temb_dims
|
247 |
|
@@ -310,17 +240,6 @@ class ResBlock(TimestepBlock):
|
|
310 |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
311 |
|
312 |
def forward(self, x, emb):
|
313 |
-
"""
|
314 |
-
Apply the block to a Tensor, conditioned on a timestep embedding.
|
315 |
-
:param x: an [N x C x ...] Tensor of features.
|
316 |
-
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
317 |
-
:return: an [N x C x ...] Tensor of outputs.
|
318 |
-
"""
|
319 |
-
return checkpoint(
|
320 |
-
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
321 |
-
)
|
322 |
-
|
323 |
-
def _forward(self, x, emb):
|
324 |
if self.updown:
|
325 |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
326 |
h = in_rest(x)
|
@@ -348,233 +267,42 @@ class ResBlock(TimestepBlock):
|
|
348 |
h = self.out_layers(h)
|
349 |
return self.skip_connection(x) + h
|
350 |
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
An attention block that allows spatial positions to attend to each other.
|
355 |
-
Originally ported from here, but adapted to the N-d case.
|
356 |
-
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
357 |
-
"""
|
358 |
-
|
359 |
-
def __init__(
|
360 |
-
self,
|
361 |
-
channels,
|
362 |
-
num_heads=1,
|
363 |
-
num_head_channels=-1,
|
364 |
-
use_checkpoint=False,
|
365 |
-
use_new_attention_order=False,
|
366 |
-
):
|
367 |
-
super().__init__()
|
368 |
-
self.channels = channels
|
369 |
-
if num_head_channels == -1:
|
370 |
-
self.num_heads = num_heads
|
371 |
-
else:
|
372 |
-
assert (
|
373 |
-
channels % num_head_channels == 0
|
374 |
-
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
375 |
-
self.num_heads = channels // num_head_channels
|
376 |
-
self.use_checkpoint = use_checkpoint
|
377 |
-
self.norm = normalization(channels)
|
378 |
-
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
379 |
-
if use_new_attention_order:
|
380 |
-
# split qkv before split heads
|
381 |
-
self.attention = QKVAttention(self.num_heads)
|
382 |
-
else:
|
383 |
-
# split heads before split qkv
|
384 |
-
self.attention = QKVAttentionLegacy(self.num_heads)
|
385 |
-
|
386 |
-
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
387 |
-
|
388 |
-
def forward(self, x, **kwargs):
|
389 |
-
# TODO add crossframe attention and use mixed checkpoint
|
390 |
-
return checkpoint(
|
391 |
-
self._forward, (x,), self.parameters(), True
|
392 |
-
) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
393 |
-
# return pt_checkpoint(self._forward, x) # pytorch
|
394 |
-
|
395 |
-
def _forward(self, x):
|
396 |
-
b, c, *spatial = x.shape
|
397 |
-
x = x.reshape(b, c, -1)
|
398 |
-
qkv = self.qkv(self.norm(x))
|
399 |
-
h = self.attention(qkv)
|
400 |
-
h = self.proj_out(h)
|
401 |
-
return (x + h).reshape(b, c, *spatial)
|
402 |
-
|
403 |
-
|
404 |
-
def count_flops_attn(model, _x, y):
|
405 |
-
"""
|
406 |
-
A counter for the `thop` package to count the operations in an
|
407 |
-
attention operation.
|
408 |
-
Meant to be used like:
|
409 |
-
macs, params = thop.profile(
|
410 |
-
model,
|
411 |
-
inputs=(inputs, timestamps),
|
412 |
-
custom_ops={QKVAttention: QKVAttention.count_flops},
|
413 |
-
)
|
414 |
-
"""
|
415 |
-
b, c, *spatial = y[0].shape
|
416 |
-
num_spatial = int(np.prod(spatial))
|
417 |
-
# We perform two matmuls with the same number of ops.
|
418 |
-
# The first computes the weight matrix, the second computes
|
419 |
-
# the combination of the value vectors.
|
420 |
-
matmul_ops = 2 * b * (num_spatial**2) * c
|
421 |
-
model.total_ops += th.DoubleTensor([matmul_ops])
|
422 |
-
|
423 |
-
|
424 |
-
class QKVAttentionLegacy(nn.Module):
|
425 |
-
"""
|
426 |
-
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
427 |
-
"""
|
428 |
-
|
429 |
-
def __init__(self, n_heads):
|
430 |
-
super().__init__()
|
431 |
-
self.n_heads = n_heads
|
432 |
-
|
433 |
-
def forward(self, qkv):
|
434 |
-
"""
|
435 |
-
Apply QKV attention.
|
436 |
-
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
437 |
-
:return: an [N x (H * C) x T] tensor after attention.
|
438 |
-
"""
|
439 |
-
bs, width, length = qkv.shape
|
440 |
-
assert width % (3 * self.n_heads) == 0
|
441 |
-
ch = width // (3 * self.n_heads)
|
442 |
-
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
443 |
-
scale = 1 / math.sqrt(math.sqrt(ch))
|
444 |
-
weight = th.einsum(
|
445 |
-
"bct,bcs->bts", q * scale, k * scale
|
446 |
-
) # More stable with f16 than dividing afterwards
|
447 |
-
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
448 |
-
a = th.einsum("bts,bcs->bct", weight, v)
|
449 |
-
return a.reshape(bs, -1, length)
|
450 |
-
|
451 |
-
@staticmethod
|
452 |
-
def count_flops(model, _x, y):
|
453 |
-
return count_flops_attn(model, _x, y)
|
454 |
-
|
455 |
-
|
456 |
-
class QKVAttention(nn.Module):
|
457 |
-
"""
|
458 |
-
A module which performs QKV attention and splits in a different order.
|
459 |
-
"""
|
460 |
-
|
461 |
-
def __init__(self, n_heads):
|
462 |
-
super().__init__()
|
463 |
-
self.n_heads = n_heads
|
464 |
-
|
465 |
-
def forward(self, qkv):
|
466 |
-
"""
|
467 |
-
Apply QKV attention.
|
468 |
-
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
469 |
-
:return: an [N x (H * C) x T] tensor after attention.
|
470 |
-
"""
|
471 |
-
bs, width, length = qkv.shape
|
472 |
-
assert width % (3 * self.n_heads) == 0
|
473 |
-
ch = width // (3 * self.n_heads)
|
474 |
-
q, k, v = qkv.chunk(3, dim=1)
|
475 |
-
scale = 1 / math.sqrt(math.sqrt(ch))
|
476 |
-
weight = th.einsum(
|
477 |
-
"bct,bcs->bts",
|
478 |
-
(q * scale).view(bs * self.n_heads, ch, length),
|
479 |
-
(k * scale).view(bs * self.n_heads, ch, length),
|
480 |
-
) # More stable with f16 than dividing afterwards
|
481 |
-
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
482 |
-
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
483 |
-
return a.reshape(bs, -1, length)
|
484 |
-
|
485 |
-
@staticmethod
|
486 |
-
def count_flops(model, _x, y):
|
487 |
-
return count_flops_attn(model, _x, y)
|
488 |
-
|
489 |
-
|
490 |
-
class Timestep(nn.Module):
|
491 |
-
def __init__(self, dim):
|
492 |
-
super().__init__()
|
493 |
-
self.dim = dim
|
494 |
-
|
495 |
-
def forward(self, t):
|
496 |
-
return timestep_embedding(t, self.dim)
|
497 |
|
498 |
|
499 |
-
class
|
500 |
-
"""
|
501 |
-
The full UNet model with attention and timestep embedding.
|
502 |
-
:param in_channels: channels in the input Tensor.
|
503 |
-
:param model_channels: base channel count for the model.
|
504 |
-
:param out_channels: channels in the output Tensor.
|
505 |
-
:param num_res_blocks: number of residual blocks per downsample.
|
506 |
-
:param attention_resolutions: a collection of downsample rates at which
|
507 |
-
attention will take place. May be a set, list, or tuple.
|
508 |
-
For example, if this contains 4, then at 4x downsampling, attention
|
509 |
-
will be used.
|
510 |
-
:param dropout: the dropout probability.
|
511 |
-
:param channel_mult: channel multiplier for each level of the UNet.
|
512 |
-
:param conv_resample: if True, use learned convolutions for upsampling and
|
513 |
-
downsampling.
|
514 |
-
:param dims: determines if the signal is 1D, 2D, or 3D.
|
515 |
-
:param num_classes: if specified (as an int), then this model will be
|
516 |
-
class-conditional with `num_classes` classes.
|
517 |
-
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
518 |
-
:param num_heads: the number of attention heads in each attention layer.
|
519 |
-
:param num_heads_channels: if specified, ignore num_heads and instead use
|
520 |
-
a fixed channel width per attention head.
|
521 |
-
:param num_heads_upsample: works with num_heads to set a different number
|
522 |
-
of heads for upsampling. Deprecated.
|
523 |
-
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
524 |
-
:param resblock_updown: use residual blocks for up/downsampling.
|
525 |
-
:param use_new_attention_order: use a different attention pattern for potentially
|
526 |
-
increased efficiency.
|
527 |
-
"""
|
528 |
|
529 |
def __init__(
|
530 |
self,
|
531 |
in_channels,
|
|
|
532 |
model_channels,
|
533 |
out_channels,
|
534 |
num_res_blocks,
|
535 |
attention_resolutions,
|
536 |
dropout=0,
|
537 |
channel_mult=(1, 2, 4, 8),
|
|
|
|
|
538 |
conv_resample=True,
|
539 |
dims=2,
|
540 |
-
|
541 |
-
use_checkpoint=False,
|
542 |
-
use_fp16=False,
|
543 |
num_heads=-1,
|
544 |
num_head_channels=-1,
|
545 |
num_heads_upsample=-1,
|
546 |
use_scale_shift_norm=False,
|
547 |
resblock_updown=False,
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
context_dim=None, # custom transformer support
|
552 |
-
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
553 |
-
legacy=True,
|
554 |
-
disable_self_attentions=None,
|
555 |
num_attention_blocks=None,
|
556 |
-
disable_middle_self_attn=False,
|
557 |
use_linear_in_transformer=False,
|
558 |
-
spatial_transformer_attn_type="softmax",
|
559 |
adm_in_channels=None,
|
560 |
-
|
561 |
-
offload_to_cpu=False,
|
562 |
-
transformer_depth_middle=None,
|
563 |
):
|
564 |
super().__init__()
|
565 |
-
from omegaconf.listconfig import ListConfig
|
566 |
-
|
567 |
-
if use_spatial_transformer:
|
568 |
-
assert (
|
569 |
-
context_dim is not None
|
570 |
-
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
571 |
-
|
572 |
-
if context_dim is not None:
|
573 |
-
assert (
|
574 |
-
use_spatial_transformer
|
575 |
-
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
576 |
-
if type(context_dim) == ListConfig:
|
577 |
-
context_dim = list(context_dim)
|
578 |
|
579 |
if num_heads_upsample == -1:
|
580 |
num_heads_upsample = num_heads
|
@@ -590,106 +318,39 @@ class UNetModel(nn.Module):
|
|
590 |
), "Either num_heads or num_head_channels has to be set"
|
591 |
|
592 |
self.in_channels = in_channels
|
|
|
593 |
self.model_channels = model_channels
|
594 |
self.out_channels = out_channels
|
595 |
-
if isinstance(transformer_depth, int):
|
596 |
-
transformer_depth = len(channel_mult) * [transformer_depth]
|
597 |
-
elif isinstance(transformer_depth, ListConfig):
|
598 |
-
transformer_depth = list(transformer_depth)
|
599 |
-
transformer_depth_middle = default(
|
600 |
-
transformer_depth_middle, transformer_depth[-1]
|
601 |
-
)
|
602 |
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
raise ValueError(
|
608 |
-
"provide num_res_blocks either as an int (globally constant) or "
|
609 |
-
"as a list/tuple (per-level) with the same length as channel_mult"
|
610 |
-
)
|
611 |
-
self.num_res_blocks = num_res_blocks
|
612 |
-
# self.num_res_blocks = num_res_blocks
|
613 |
-
if disable_self_attentions is not None:
|
614 |
-
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
615 |
-
assert len(disable_self_attentions) == len(channel_mult)
|
616 |
-
if num_attention_blocks is not None:
|
617 |
-
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
618 |
-
assert all(
|
619 |
-
map(
|
620 |
-
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
621 |
-
range(len(num_attention_blocks)),
|
622 |
-
)
|
623 |
-
)
|
624 |
-
print(
|
625 |
-
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
626 |
-
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
627 |
-
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
628 |
-
f"attention will still not be set."
|
629 |
-
) # todo: convert to warning
|
630 |
|
631 |
self.attention_resolutions = attention_resolutions
|
632 |
self.dropout = dropout
|
633 |
self.channel_mult = channel_mult
|
634 |
self.conv_resample = conv_resample
|
635 |
-
self.
|
636 |
-
self.use_checkpoint = use_checkpoint
|
637 |
-
if use_fp16:
|
638 |
-
print("WARNING: use_fp16 was dropped and has no effect anymore.")
|
639 |
-
# self.dtype = th.float16 if use_fp16 else th.float32
|
640 |
self.num_heads = num_heads
|
641 |
self.num_head_channels = num_head_channels
|
642 |
self.num_heads_upsample = num_heads_upsample
|
643 |
-
self.predict_codebook_ids = n_embed is not None
|
644 |
-
|
645 |
-
assert use_fairscale_checkpoint != use_checkpoint or not (
|
646 |
-
use_checkpoint or use_fairscale_checkpoint
|
647 |
-
)
|
648 |
-
|
649 |
-
self.use_fairscale_checkpoint = False
|
650 |
-
checkpoint_wrapper_fn = (
|
651 |
-
partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu)
|
652 |
-
if self.use_fairscale_checkpoint
|
653 |
-
else lambda x: x
|
654 |
-
)
|
655 |
|
656 |
time_embed_dim = model_channels * 4
|
657 |
-
self.time_embed =
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
linear(time_embed_dim, time_embed_dim),
|
662 |
-
)
|
663 |
)
|
664 |
-
|
665 |
-
if self.
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
elif self.num_classes == "timestep":
|
672 |
-
self.label_emb = checkpoint_wrapper_fn(
|
673 |
-
nn.Sequential(
|
674 |
-
Timestep(model_channels),
|
675 |
-
nn.Sequential(
|
676 |
-
linear(model_channels, time_embed_dim),
|
677 |
-
nn.SiLU(),
|
678 |
-
linear(time_embed_dim, time_embed_dim),
|
679 |
-
),
|
680 |
-
)
|
681 |
-
)
|
682 |
-
elif self.num_classes == "sequential":
|
683 |
-
assert adm_in_channels is not None
|
684 |
-
self.label_emb = nn.Sequential(
|
685 |
-
nn.Sequential(
|
686 |
-
linear(adm_in_channels, time_embed_dim),
|
687 |
-
nn.SiLU(),
|
688 |
-
linear(time_embed_dim, time_embed_dim),
|
689 |
-
)
|
690 |
)
|
691 |
-
|
692 |
-
raise ValueError()
|
693 |
|
694 |
self.input_blocks = nn.ModuleList(
|
695 |
[
|
@@ -698,6 +359,26 @@ class UNetModel(nn.Module):
|
|
698 |
)
|
699 |
]
|
700 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
701 |
self._feature_size = model_channels
|
702 |
input_block_chans = [model_channels]
|
703 |
ch = model_channels
|
@@ -705,16 +386,13 @@ class UNetModel(nn.Module):
|
|
705 |
for level, mult in enumerate(channel_mult):
|
706 |
for nr in range(self.num_res_blocks[level]):
|
707 |
layers = [
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
use_checkpoint=use_checkpoint,
|
716 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
717 |
-
)
|
718 |
)
|
719 |
]
|
720 |
ch = mult * model_channels
|
@@ -724,45 +402,19 @@ class UNetModel(nn.Module):
|
|
724 |
else:
|
725 |
num_heads = ch // num_head_channels
|
726 |
dim_head = num_head_channels
|
727 |
-
if legacy:
|
728 |
-
# num_heads = 1
|
729 |
-
dim_head = (
|
730 |
-
ch // num_heads
|
731 |
-
if use_spatial_transformer
|
732 |
-
else num_head_channels
|
733 |
-
)
|
734 |
-
if exists(disable_self_attentions):
|
735 |
-
disabled_sa = disable_self_attentions[level]
|
736 |
-
else:
|
737 |
-
disabled_sa = False
|
738 |
-
|
739 |
if (
|
740 |
not exists(num_attention_blocks)
|
741 |
or nr < num_attention_blocks[level]
|
742 |
):
|
743 |
layers.append(
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
)
|
753 |
-
if not use_spatial_transformer
|
754 |
-
else checkpoint_wrapper_fn(
|
755 |
-
SpatialTransformer(
|
756 |
-
ch,
|
757 |
-
num_heads,
|
758 |
-
dim_head,
|
759 |
-
depth=transformer_depth[level],
|
760 |
-
context_dim=context_dim,
|
761 |
-
disable_self_attn=disabled_sa,
|
762 |
-
use_linear=use_linear_in_transformer,
|
763 |
-
attn_type=spatial_transformer_attn_type,
|
764 |
-
use_checkpoint=use_checkpoint,
|
765 |
-
)
|
766 |
)
|
767 |
)
|
768 |
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
@@ -772,17 +424,14 @@ class UNetModel(nn.Module):
|
|
772 |
out_ch = ch
|
773 |
self.input_blocks.append(
|
774 |
TimestepEmbedSequential(
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
784 |
-
down=True,
|
785 |
-
)
|
786 |
)
|
787 |
if resblock_updown
|
788 |
else Downsample(
|
@@ -800,54 +449,33 @@ class UNetModel(nn.Module):
|
|
800 |
else:
|
801 |
num_heads = ch // num_head_channels
|
802 |
dim_head = num_head_channels
|
803 |
-
|
804 |
-
# num_heads = 1
|
805 |
-
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
806 |
self.middle_block = TimestepEmbedSequential(
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
use_checkpoint=use_checkpoint,
|
814 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
815 |
-
)
|
816 |
-
),
|
817 |
-
checkpoint_wrapper_fn(
|
818 |
-
AttentionBlock(
|
819 |
-
ch,
|
820 |
-
use_checkpoint=use_checkpoint,
|
821 |
-
num_heads=num_heads,
|
822 |
-
num_head_channels=dim_head,
|
823 |
-
use_new_attention_order=use_new_attention_order,
|
824 |
-
)
|
825 |
-
)
|
826 |
-
if not use_spatial_transformer
|
827 |
-
else checkpoint_wrapper_fn(
|
828 |
-
SpatialTransformer( # always uses a self-attn
|
829 |
-
ch,
|
830 |
-
num_heads,
|
831 |
-
dim_head,
|
832 |
-
depth=transformer_depth_middle,
|
833 |
-
context_dim=context_dim,
|
834 |
-
disable_self_attn=disable_middle_self_attn,
|
835 |
-
use_linear=use_linear_in_transformer,
|
836 |
-
attn_type=spatial_transformer_attn_type,
|
837 |
-
use_checkpoint=use_checkpoint,
|
838 |
-
)
|
839 |
),
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
)
|
849 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
850 |
)
|
|
|
851 |
self._feature_size += ch
|
852 |
|
853 |
self.output_blocks = nn.ModuleList([])
|
@@ -855,16 +483,13 @@ class UNetModel(nn.Module):
|
|
855 |
for i in range(self.num_res_blocks[level] + 1):
|
856 |
ich = input_block_chans.pop()
|
857 |
layers = [
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
use_checkpoint=use_checkpoint,
|
866 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
867 |
-
)
|
868 |
)
|
869 |
]
|
870 |
ch = model_channels * mult
|
@@ -874,61 +499,32 @@ class UNetModel(nn.Module):
|
|
874 |
else:
|
875 |
num_heads = ch // num_head_channels
|
876 |
dim_head = num_head_channels
|
877 |
-
if legacy:
|
878 |
-
# num_heads = 1
|
879 |
-
dim_head = (
|
880 |
-
ch // num_heads
|
881 |
-
if use_spatial_transformer
|
882 |
-
else num_head_channels
|
883 |
-
)
|
884 |
-
if exists(disable_self_attentions):
|
885 |
-
disabled_sa = disable_self_attentions[level]
|
886 |
-
else:
|
887 |
-
disabled_sa = False
|
888 |
-
|
889 |
if (
|
890 |
not exists(num_attention_blocks)
|
891 |
or i < num_attention_blocks[level]
|
892 |
):
|
893 |
layers.append(
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
)
|
903 |
-
if not use_spatial_transformer
|
904 |
-
else checkpoint_wrapper_fn(
|
905 |
-
SpatialTransformer(
|
906 |
-
ch,
|
907 |
-
num_heads,
|
908 |
-
dim_head,
|
909 |
-
depth=transformer_depth[level],
|
910 |
-
context_dim=context_dim,
|
911 |
-
disable_self_attn=disabled_sa,
|
912 |
-
use_linear=use_linear_in_transformer,
|
913 |
-
attn_type=spatial_transformer_attn_type,
|
914 |
-
use_checkpoint=use_checkpoint,
|
915 |
-
)
|
916 |
)
|
917 |
)
|
918 |
if level and i == self.num_res_blocks[level]:
|
919 |
out_ch = ch
|
920 |
layers.append(
|
921 |
-
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
930 |
-
up=True,
|
931 |
-
)
|
932 |
)
|
933 |
if resblock_updown
|
934 |
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
@@ -937,1133 +533,92 @@ class UNetModel(nn.Module):
|
|
937 |
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
938 |
self._feature_size += ch
|
939 |
|
940 |
-
self.out =
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
945 |
-
)
|
946 |
)
|
947 |
-
|
948 |
-
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
|
|
|
|
|
955 |
|
956 |
-
def
|
957 |
-
"""
|
958 |
-
Convert the torso of the model to float16.
|
959 |
-
"""
|
960 |
-
self.input_blocks.apply(convert_module_to_f16)
|
961 |
-
self.middle_block.apply(convert_module_to_f16)
|
962 |
-
self.output_blocks.apply(convert_module_to_f16)
|
963 |
|
964 |
-
|
965 |
-
|
966 |
-
|
967 |
-
|
968 |
-
|
969 |
-
|
970 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
971 |
|
972 |
-
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
|
973 |
-
"""
|
974 |
-
Apply the model to an input batch.
|
975 |
-
:param x: an [N x C x ...] Tensor of inputs.
|
976 |
-
:param timesteps: a 1-D batch of timesteps.
|
977 |
-
:param context: conditioning plugged in via crossattn
|
978 |
-
:param y: an [N] Tensor of labels, if class-conditional.
|
979 |
-
:return: an [N x C x ...] Tensor of outputs.
|
980 |
-
"""
|
981 |
assert (y is not None) == (
|
982 |
-
self.
|
983 |
), "must specify y if and only if the model is class-conditional"
|
|
|
|
|
|
|
984 |
hs = []
|
985 |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
986 |
emb = self.time_embed(t_emb)
|
987 |
|
988 |
-
if self.
|
989 |
assert y.shape[0] == x.shape[0]
|
990 |
emb = emb + self.label_emb(y)
|
991 |
|
992 |
-
# h = x.type(self.dtype)
|
993 |
-
h = x
|
994 |
-
for i, module in enumerate(self.input_blocks):
|
995 |
-
h = module(h, emb, context)
|
996 |
-
hs.append(h)
|
997 |
-
h = self.middle_block(h, emb, context)
|
998 |
-
for i, module in enumerate(self.output_blocks):
|
999 |
-
h = th.cat([h, hs.pop()], dim=1)
|
1000 |
-
h = module(h, emb, context)
|
1001 |
-
h = h.type(x.dtype)
|
1002 |
-
if self.predict_codebook_ids:
|
1003 |
-
assert False, "not supported anymore. what the f*** are you doing?"
|
1004 |
-
else:
|
1005 |
-
return self.out(h)
|
1006 |
-
|
1007 |
-
|
1008 |
-
|
1009 |
-
class UNetModel(nn.Module):
|
1010 |
-
"""
|
1011 |
-
The full UNet model with attention and timestep embedding.
|
1012 |
-
:param in_channels: channels in the input Tensor.
|
1013 |
-
:param model_channels: base channel count for the model.
|
1014 |
-
:param out_channels: channels in the output Tensor.
|
1015 |
-
:param num_res_blocks: number of residual blocks per downsample.
|
1016 |
-
:param attention_resolutions: a collection of downsample rates at which
|
1017 |
-
attention will take place. May be a set, list, or tuple.
|
1018 |
-
For example, if this contains 4, then at 4x downsampling, attention
|
1019 |
-
will be used.
|
1020 |
-
:param dropout: the dropout probability.
|
1021 |
-
:param channel_mult: channel multiplier for each level of the UNet.
|
1022 |
-
:param conv_resample: if True, use learned convolutions for upsampling and
|
1023 |
-
downsampling.
|
1024 |
-
:param dims: determines if the signal is 1D, 2D, or 3D.
|
1025 |
-
:param num_classes: if specified (as an int), then this model will be
|
1026 |
-
class-conditional with `num_classes` classes.
|
1027 |
-
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
1028 |
-
:param num_heads: the number of attention heads in each attention layer.
|
1029 |
-
:param num_heads_channels: if specified, ignore num_heads and instead use
|
1030 |
-
a fixed channel width per attention head.
|
1031 |
-
:param num_heads_upsample: works with num_heads to set a different number
|
1032 |
-
of heads for upsampling. Deprecated.
|
1033 |
-
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
1034 |
-
:param resblock_updown: use residual blocks for up/downsampling.
|
1035 |
-
:param use_new_attention_order: use a different attention pattern for potentially
|
1036 |
-
increased efficiency.
|
1037 |
-
"""
|
1038 |
-
|
1039 |
-
def __init__(
|
1040 |
-
self,
|
1041 |
-
in_channels,
|
1042 |
-
model_channels,
|
1043 |
-
out_channels,
|
1044 |
-
num_res_blocks,
|
1045 |
-
attention_resolutions,
|
1046 |
-
dropout=0,
|
1047 |
-
channel_mult=(1, 2, 4, 8),
|
1048 |
-
conv_resample=True,
|
1049 |
-
dims=2,
|
1050 |
-
num_classes=None,
|
1051 |
-
use_checkpoint=False,
|
1052 |
-
use_fp16=False,
|
1053 |
-
num_heads=-1,
|
1054 |
-
num_head_channels=-1,
|
1055 |
-
num_heads_upsample=-1,
|
1056 |
-
use_scale_shift_norm=False,
|
1057 |
-
resblock_updown=False,
|
1058 |
-
use_new_attention_order=False,
|
1059 |
-
use_spatial_transformer=False, # custom transformer support
|
1060 |
-
transformer_depth=1, # custom transformer support
|
1061 |
-
context_dim=None, # custom transformer support
|
1062 |
-
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
1063 |
-
legacy=True,
|
1064 |
-
disable_self_attentions=None,
|
1065 |
-
num_attention_blocks=None,
|
1066 |
-
disable_middle_self_attn=False,
|
1067 |
-
use_linear_in_transformer=False,
|
1068 |
-
spatial_transformer_attn_type="softmax",
|
1069 |
-
adm_in_channels=None,
|
1070 |
-
use_fairscale_checkpoint=False,
|
1071 |
-
offload_to_cpu=False,
|
1072 |
-
transformer_depth_middle=None,
|
1073 |
-
):
|
1074 |
-
super().__init__()
|
1075 |
-
from omegaconf.listconfig import ListConfig
|
1076 |
-
|
1077 |
-
if use_spatial_transformer:
|
1078 |
-
assert (
|
1079 |
-
context_dim is not None
|
1080 |
-
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
1081 |
-
|
1082 |
-
if context_dim is not None:
|
1083 |
-
assert (
|
1084 |
-
use_spatial_transformer
|
1085 |
-
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
1086 |
-
if type(context_dim) == ListConfig:
|
1087 |
-
context_dim = list(context_dim)
|
1088 |
-
|
1089 |
-
if num_heads_upsample == -1:
|
1090 |
-
num_heads_upsample = num_heads
|
1091 |
-
|
1092 |
-
if num_heads == -1:
|
1093 |
-
assert (
|
1094 |
-
num_head_channels != -1
|
1095 |
-
), "Either num_heads or num_head_channels has to be set"
|
1096 |
-
|
1097 |
-
if num_head_channels == -1:
|
1098 |
-
assert (
|
1099 |
-
num_heads != -1
|
1100 |
-
), "Either num_heads or num_head_channels has to be set"
|
1101 |
-
|
1102 |
-
self.in_channels = in_channels
|
1103 |
-
self.model_channels = model_channels
|
1104 |
-
self.out_channels = out_channels
|
1105 |
-
if isinstance(transformer_depth, int):
|
1106 |
-
transformer_depth = len(channel_mult) * [transformer_depth]
|
1107 |
-
elif isinstance(transformer_depth, ListConfig):
|
1108 |
-
transformer_depth = list(transformer_depth)
|
1109 |
-
transformer_depth_middle = default(
|
1110 |
-
transformer_depth_middle, transformer_depth[-1]
|
1111 |
-
)
|
1112 |
-
|
1113 |
-
if isinstance(num_res_blocks, int):
|
1114 |
-
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
1115 |
-
else:
|
1116 |
-
if len(num_res_blocks) != len(channel_mult):
|
1117 |
-
raise ValueError(
|
1118 |
-
"provide num_res_blocks either as an int (globally constant) or "
|
1119 |
-
"as a list/tuple (per-level) with the same length as channel_mult"
|
1120 |
-
)
|
1121 |
-
self.num_res_blocks = num_res_blocks
|
1122 |
-
# self.num_res_blocks = num_res_blocks
|
1123 |
-
if disable_self_attentions is not None:
|
1124 |
-
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
1125 |
-
assert len(disable_self_attentions) == len(channel_mult)
|
1126 |
-
if num_attention_blocks is not None:
|
1127 |
-
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
1128 |
-
assert all(
|
1129 |
-
map(
|
1130 |
-
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
1131 |
-
range(len(num_attention_blocks)),
|
1132 |
-
)
|
1133 |
-
)
|
1134 |
-
print(
|
1135 |
-
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
1136 |
-
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
1137 |
-
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
1138 |
-
f"attention will still not be set."
|
1139 |
-
) # todo: convert to warning
|
1140 |
-
|
1141 |
-
self.attention_resolutions = attention_resolutions
|
1142 |
-
self.dropout = dropout
|
1143 |
-
self.channel_mult = channel_mult
|
1144 |
-
self.conv_resample = conv_resample
|
1145 |
-
self.num_classes = num_classes
|
1146 |
-
self.use_checkpoint = use_checkpoint
|
1147 |
-
if use_fp16:
|
1148 |
-
print("WARNING: use_fp16 was dropped and has no effect anymore.")
|
1149 |
-
# self.dtype = th.float16 if use_fp16 else th.float32
|
1150 |
-
self.num_heads = num_heads
|
1151 |
-
self.num_head_channels = num_head_channels
|
1152 |
-
self.num_heads_upsample = num_heads_upsample
|
1153 |
-
self.predict_codebook_ids = n_embed is not None
|
1154 |
-
|
1155 |
-
assert use_fairscale_checkpoint != use_checkpoint or not (
|
1156 |
-
use_checkpoint or use_fairscale_checkpoint
|
1157 |
-
)
|
1158 |
-
|
1159 |
-
self.use_fairscale_checkpoint = False
|
1160 |
-
checkpoint_wrapper_fn = (
|
1161 |
-
partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu)
|
1162 |
-
if self.use_fairscale_checkpoint
|
1163 |
-
else lambda x: x
|
1164 |
-
)
|
1165 |
-
|
1166 |
-
time_embed_dim = model_channels * 4
|
1167 |
-
self.time_embed = checkpoint_wrapper_fn(
|
1168 |
-
nn.Sequential(
|
1169 |
-
linear(model_channels, time_embed_dim),
|
1170 |
-
nn.SiLU(),
|
1171 |
-
linear(time_embed_dim, time_embed_dim),
|
1172 |
-
)
|
1173 |
-
)
|
1174 |
-
|
1175 |
-
if self.num_classes is not None:
|
1176 |
-
if isinstance(self.num_classes, int):
|
1177 |
-
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
1178 |
-
elif self.num_classes == "continuous":
|
1179 |
-
print("setting up linear c_adm embedding layer")
|
1180 |
-
self.label_emb = nn.Linear(1, time_embed_dim)
|
1181 |
-
elif self.num_classes == "timestep":
|
1182 |
-
self.label_emb = checkpoint_wrapper_fn(
|
1183 |
-
nn.Sequential(
|
1184 |
-
Timestep(model_channels),
|
1185 |
-
nn.Sequential(
|
1186 |
-
linear(model_channels, time_embed_dim),
|
1187 |
-
nn.SiLU(),
|
1188 |
-
linear(time_embed_dim, time_embed_dim),
|
1189 |
-
),
|
1190 |
-
)
|
1191 |
-
)
|
1192 |
-
elif self.num_classes == "sequential":
|
1193 |
-
assert adm_in_channels is not None
|
1194 |
-
self.label_emb = nn.Sequential(
|
1195 |
-
nn.Sequential(
|
1196 |
-
linear(adm_in_channels, time_embed_dim),
|
1197 |
-
nn.SiLU(),
|
1198 |
-
linear(time_embed_dim, time_embed_dim),
|
1199 |
-
)
|
1200 |
-
)
|
1201 |
-
else:
|
1202 |
-
raise ValueError()
|
1203 |
-
|
1204 |
-
self.input_blocks = nn.ModuleList(
|
1205 |
-
[
|
1206 |
-
TimestepEmbedSequential(
|
1207 |
-
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
1208 |
-
)
|
1209 |
-
]
|
1210 |
-
)
|
1211 |
-
self._feature_size = model_channels
|
1212 |
-
input_block_chans = [model_channels]
|
1213 |
-
ch = model_channels
|
1214 |
-
ds = 1
|
1215 |
-
for level, mult in enumerate(channel_mult):
|
1216 |
-
for nr in range(self.num_res_blocks[level]):
|
1217 |
-
layers = [
|
1218 |
-
checkpoint_wrapper_fn(
|
1219 |
-
ResBlock(
|
1220 |
-
ch,
|
1221 |
-
time_embed_dim,
|
1222 |
-
dropout,
|
1223 |
-
out_channels=mult * model_channels,
|
1224 |
-
dims=dims,
|
1225 |
-
use_checkpoint=use_checkpoint,
|
1226 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
1227 |
-
)
|
1228 |
-
)
|
1229 |
-
]
|
1230 |
-
ch = mult * model_channels
|
1231 |
-
if ds in attention_resolutions:
|
1232 |
-
if num_head_channels == -1:
|
1233 |
-
dim_head = ch // num_heads
|
1234 |
-
else:
|
1235 |
-
num_heads = ch // num_head_channels
|
1236 |
-
dim_head = num_head_channels
|
1237 |
-
if legacy:
|
1238 |
-
# num_heads = 1
|
1239 |
-
dim_head = (
|
1240 |
-
ch // num_heads
|
1241 |
-
if use_spatial_transformer
|
1242 |
-
else num_head_channels
|
1243 |
-
)
|
1244 |
-
if exists(disable_self_attentions):
|
1245 |
-
disabled_sa = disable_self_attentions[level]
|
1246 |
-
else:
|
1247 |
-
disabled_sa = False
|
1248 |
-
|
1249 |
-
if (
|
1250 |
-
not exists(num_attention_blocks)
|
1251 |
-
or nr < num_attention_blocks[level]
|
1252 |
-
):
|
1253 |
-
layers.append(
|
1254 |
-
checkpoint_wrapper_fn(
|
1255 |
-
AttentionBlock(
|
1256 |
-
ch,
|
1257 |
-
use_checkpoint=use_checkpoint,
|
1258 |
-
num_heads=num_heads,
|
1259 |
-
num_head_channels=dim_head,
|
1260 |
-
use_new_attention_order=use_new_attention_order,
|
1261 |
-
)
|
1262 |
-
)
|
1263 |
-
if not use_spatial_transformer
|
1264 |
-
else checkpoint_wrapper_fn(
|
1265 |
-
SpatialTransformer(
|
1266 |
-
ch,
|
1267 |
-
num_heads,
|
1268 |
-
dim_head,
|
1269 |
-
depth=transformer_depth[level],
|
1270 |
-
context_dim=context_dim,
|
1271 |
-
disable_self_attn=disabled_sa,
|
1272 |
-
use_linear=use_linear_in_transformer,
|
1273 |
-
attn_type=spatial_transformer_attn_type,
|
1274 |
-
use_checkpoint=use_checkpoint,
|
1275 |
-
)
|
1276 |
-
)
|
1277 |
-
)
|
1278 |
-
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
1279 |
-
self._feature_size += ch
|
1280 |
-
input_block_chans.append(ch)
|
1281 |
-
if level != len(channel_mult) - 1:
|
1282 |
-
out_ch = ch
|
1283 |
-
self.input_blocks.append(
|
1284 |
-
TimestepEmbedSequential(
|
1285 |
-
checkpoint_wrapper_fn(
|
1286 |
-
ResBlock(
|
1287 |
-
ch,
|
1288 |
-
time_embed_dim,
|
1289 |
-
dropout,
|
1290 |
-
out_channels=out_ch,
|
1291 |
-
dims=dims,
|
1292 |
-
use_checkpoint=use_checkpoint,
|
1293 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
1294 |
-
down=True,
|
1295 |
-
)
|
1296 |
-
)
|
1297 |
-
if resblock_updown
|
1298 |
-
else Downsample(
|
1299 |
-
ch, conv_resample, dims=dims, out_channels=out_ch
|
1300 |
-
)
|
1301 |
-
)
|
1302 |
-
)
|
1303 |
-
ch = out_ch
|
1304 |
-
input_block_chans.append(ch)
|
1305 |
-
ds *= 2
|
1306 |
-
self._feature_size += ch
|
1307 |
-
|
1308 |
-
if num_head_channels == -1:
|
1309 |
-
dim_head = ch // num_heads
|
1310 |
-
else:
|
1311 |
-
num_heads = ch // num_head_channels
|
1312 |
-
dim_head = num_head_channels
|
1313 |
-
if legacy:
|
1314 |
-
# num_heads = 1
|
1315 |
-
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
1316 |
-
self.middle_block = TimestepEmbedSequential(
|
1317 |
-
checkpoint_wrapper_fn(
|
1318 |
-
ResBlock(
|
1319 |
-
ch,
|
1320 |
-
time_embed_dim,
|
1321 |
-
dropout,
|
1322 |
-
dims=dims,
|
1323 |
-
use_checkpoint=use_checkpoint,
|
1324 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
1325 |
-
)
|
1326 |
-
),
|
1327 |
-
checkpoint_wrapper_fn(
|
1328 |
-
AttentionBlock(
|
1329 |
-
ch,
|
1330 |
-
use_checkpoint=use_checkpoint,
|
1331 |
-
num_heads=num_heads,
|
1332 |
-
num_head_channels=dim_head,
|
1333 |
-
use_new_attention_order=use_new_attention_order,
|
1334 |
-
)
|
1335 |
-
)
|
1336 |
-
if not use_spatial_transformer
|
1337 |
-
else checkpoint_wrapper_fn(
|
1338 |
-
SpatialTransformer( # always uses a self-attn
|
1339 |
-
ch,
|
1340 |
-
num_heads,
|
1341 |
-
dim_head,
|
1342 |
-
depth=transformer_depth_middle,
|
1343 |
-
context_dim=context_dim,
|
1344 |
-
disable_self_attn=disable_middle_self_attn,
|
1345 |
-
use_linear=use_linear_in_transformer,
|
1346 |
-
attn_type=spatial_transformer_attn_type,
|
1347 |
-
use_checkpoint=use_checkpoint,
|
1348 |
-
)
|
1349 |
-
),
|
1350 |
-
checkpoint_wrapper_fn(
|
1351 |
-
ResBlock(
|
1352 |
-
ch,
|
1353 |
-
time_embed_dim,
|
1354 |
-
dropout,
|
1355 |
-
dims=dims,
|
1356 |
-
use_checkpoint=use_checkpoint,
|
1357 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
1358 |
-
)
|
1359 |
-
),
|
1360 |
-
)
|
1361 |
-
self._feature_size += ch
|
1362 |
-
|
1363 |
-
self.output_blocks = nn.ModuleList([])
|
1364 |
-
for level, mult in list(enumerate(channel_mult))[::-1]:
|
1365 |
-
for i in range(self.num_res_blocks[level] + 1):
|
1366 |
-
ich = input_block_chans.pop()
|
1367 |
-
layers = [
|
1368 |
-
checkpoint_wrapper_fn(
|
1369 |
-
ResBlock(
|
1370 |
-
ch + ich,
|
1371 |
-
time_embed_dim,
|
1372 |
-
dropout,
|
1373 |
-
out_channels=model_channels * mult,
|
1374 |
-
dims=dims,
|
1375 |
-
use_checkpoint=use_checkpoint,
|
1376 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
1377 |
-
)
|
1378 |
-
)
|
1379 |
-
]
|
1380 |
-
ch = model_channels * mult
|
1381 |
-
if ds in attention_resolutions:
|
1382 |
-
if num_head_channels == -1:
|
1383 |
-
dim_head = ch // num_heads
|
1384 |
-
else:
|
1385 |
-
num_heads = ch // num_head_channels
|
1386 |
-
dim_head = num_head_channels
|
1387 |
-
if legacy:
|
1388 |
-
# num_heads = 1
|
1389 |
-
dim_head = (
|
1390 |
-
ch // num_heads
|
1391 |
-
if use_spatial_transformer
|
1392 |
-
else num_head_channels
|
1393 |
-
)
|
1394 |
-
if exists(disable_self_attentions):
|
1395 |
-
disabled_sa = disable_self_attentions[level]
|
1396 |
-
else:
|
1397 |
-
disabled_sa = False
|
1398 |
-
|
1399 |
-
if (
|
1400 |
-
not exists(num_attention_blocks)
|
1401 |
-
or i < num_attention_blocks[level]
|
1402 |
-
):
|
1403 |
-
layers.append(
|
1404 |
-
checkpoint_wrapper_fn(
|
1405 |
-
AttentionBlock(
|
1406 |
-
ch,
|
1407 |
-
use_checkpoint=use_checkpoint,
|
1408 |
-
num_heads=num_heads_upsample,
|
1409 |
-
num_head_channels=dim_head,
|
1410 |
-
use_new_attention_order=use_new_attention_order,
|
1411 |
-
)
|
1412 |
-
)
|
1413 |
-
if not use_spatial_transformer
|
1414 |
-
else checkpoint_wrapper_fn(
|
1415 |
-
SpatialTransformer(
|
1416 |
-
ch,
|
1417 |
-
num_heads,
|
1418 |
-
dim_head,
|
1419 |
-
depth=transformer_depth[level],
|
1420 |
-
context_dim=context_dim,
|
1421 |
-
disable_self_attn=disabled_sa,
|
1422 |
-
use_linear=use_linear_in_transformer,
|
1423 |
-
attn_type=spatial_transformer_attn_type,
|
1424 |
-
use_checkpoint=use_checkpoint,
|
1425 |
-
)
|
1426 |
-
)
|
1427 |
-
)
|
1428 |
-
if level and i == self.num_res_blocks[level]:
|
1429 |
-
out_ch = ch
|
1430 |
-
layers.append(
|
1431 |
-
checkpoint_wrapper_fn(
|
1432 |
-
ResBlock(
|
1433 |
-
ch,
|
1434 |
-
time_embed_dim,
|
1435 |
-
dropout,
|
1436 |
-
out_channels=out_ch,
|
1437 |
-
dims=dims,
|
1438 |
-
use_checkpoint=use_checkpoint,
|
1439 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
1440 |
-
up=True,
|
1441 |
-
)
|
1442 |
-
)
|
1443 |
-
if resblock_updown
|
1444 |
-
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
1445 |
-
)
|
1446 |
-
ds //= 2
|
1447 |
-
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
1448 |
-
self._feature_size += ch
|
1449 |
-
|
1450 |
-
self.out = checkpoint_wrapper_fn(
|
1451 |
-
nn.Sequential(
|
1452 |
-
normalization(ch),
|
1453 |
-
nn.SiLU(),
|
1454 |
-
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
1455 |
-
)
|
1456 |
-
)
|
1457 |
-
if self.predict_codebook_ids:
|
1458 |
-
self.id_predictor = checkpoint_wrapper_fn(
|
1459 |
-
nn.Sequential(
|
1460 |
-
normalization(ch),
|
1461 |
-
conv_nd(dims, model_channels, n_embed, 1),
|
1462 |
-
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
1463 |
-
)
|
1464 |
-
)
|
1465 |
-
|
1466 |
-
def convert_to_fp16(self):
|
1467 |
-
"""
|
1468 |
-
Convert the torso of the model to float16.
|
1469 |
-
"""
|
1470 |
-
self.input_blocks.apply(convert_module_to_f16)
|
1471 |
-
self.middle_block.apply(convert_module_to_f16)
|
1472 |
-
self.output_blocks.apply(convert_module_to_f16)
|
1473 |
-
|
1474 |
-
def convert_to_fp32(self):
|
1475 |
-
"""
|
1476 |
-
Convert the torso of the model to float32.
|
1477 |
-
"""
|
1478 |
-
self.input_blocks.apply(convert_module_to_f32)
|
1479 |
-
self.middle_block.apply(convert_module_to_f32)
|
1480 |
-
self.output_blocks.apply(convert_module_to_f32)
|
1481 |
-
|
1482 |
-
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
|
1483 |
-
"""
|
1484 |
-
Apply the model to an input batch.
|
1485 |
-
:param x: an [N x C x ...] Tensor of inputs.
|
1486 |
-
:param timesteps: a 1-D batch of timesteps.
|
1487 |
-
:param context: conditioning plugged in via crossattn
|
1488 |
-
:param y: an [N] Tensor of labels, if class-conditional.
|
1489 |
-
:return: an [N x C x ...] Tensor of outputs.
|
1490 |
-
"""
|
1491 |
-
assert (y is not None) == (
|
1492 |
-
self.num_classes is not None
|
1493 |
-
), "must specify y if and only if the model is class-conditional"
|
1494 |
-
hs = []
|
1495 |
-
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
1496 |
-
emb = self.time_embed(t_emb)
|
1497 |
-
|
1498 |
-
if self.num_classes is not None:
|
1499 |
-
assert y.shape[0] == x.shape[0]
|
1500 |
-
emb = emb + self.label_emb(y)
|
1501 |
-
|
1502 |
-
# h = x.type(self.dtype)
|
1503 |
-
h = x
|
1504 |
-
for i, module in enumerate(self.input_blocks):
|
1505 |
-
h = module(h, emb, context)
|
1506 |
-
hs.append(h)
|
1507 |
-
h = self.middle_block(h, emb, context)
|
1508 |
-
for i, module in enumerate(self.output_blocks):
|
1509 |
-
h = th.cat([h, hs.pop()], dim=1)
|
1510 |
-
h = module(h, emb, context)
|
1511 |
-
h = h.type(x.dtype)
|
1512 |
-
if self.predict_codebook_ids:
|
1513 |
-
assert False, "not supported anymore. what the f*** are you doing?"
|
1514 |
-
else:
|
1515 |
-
return self.out(h)
|
1516 |
-
|
1517 |
-
|
1518 |
-
import seaborn as sns
|
1519 |
-
import matplotlib.pyplot as plt
|
1520 |
-
|
1521 |
-
class UNetAddModel(nn.Module):
|
1522 |
-
|
1523 |
-
def __init__(
|
1524 |
-
self,
|
1525 |
-
in_channels,
|
1526 |
-
ctrl_channels,
|
1527 |
-
model_channels,
|
1528 |
-
out_channels,
|
1529 |
-
num_res_blocks,
|
1530 |
-
attention_resolutions,
|
1531 |
-
dropout=0,
|
1532 |
-
channel_mult=(1, 2, 4, 8),
|
1533 |
-
attn_type="attn2",
|
1534 |
-
attn_layers=[],
|
1535 |
-
conv_resample=True,
|
1536 |
-
dims=2,
|
1537 |
-
num_classes=None,
|
1538 |
-
use_checkpoint=False,
|
1539 |
-
use_fp16=False,
|
1540 |
-
num_heads=-1,
|
1541 |
-
num_head_channels=-1,
|
1542 |
-
num_heads_upsample=-1,
|
1543 |
-
use_scale_shift_norm=False,
|
1544 |
-
resblock_updown=False,
|
1545 |
-
use_new_attention_order=False,
|
1546 |
-
use_spatial_transformer=False, # custom transformer support
|
1547 |
-
transformer_depth=1, # custom transformer support
|
1548 |
-
context_dim=None, # custom transformer support
|
1549 |
-
add_context_dim=None,
|
1550 |
-
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
1551 |
-
legacy=True,
|
1552 |
-
disable_self_attentions=None,
|
1553 |
-
num_attention_blocks=None,
|
1554 |
-
disable_middle_self_attn=False,
|
1555 |
-
use_linear_in_transformer=False,
|
1556 |
-
spatial_transformer_attn_type="softmax",
|
1557 |
-
adm_in_channels=None,
|
1558 |
-
use_fairscale_checkpoint=False,
|
1559 |
-
offload_to_cpu=False,
|
1560 |
-
transformer_depth_middle=None,
|
1561 |
-
):
|
1562 |
-
super().__init__()
|
1563 |
-
from omegaconf.listconfig import ListConfig
|
1564 |
-
|
1565 |
-
if use_spatial_transformer:
|
1566 |
-
assert (
|
1567 |
-
context_dim is not None
|
1568 |
-
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
1569 |
-
|
1570 |
-
if context_dim is not None:
|
1571 |
-
assert (
|
1572 |
-
use_spatial_transformer
|
1573 |
-
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
1574 |
-
if type(context_dim) == ListConfig:
|
1575 |
-
context_dim = list(context_dim)
|
1576 |
-
|
1577 |
-
if num_heads_upsample == -1:
|
1578 |
-
num_heads_upsample = num_heads
|
1579 |
-
|
1580 |
-
if num_heads == -1:
|
1581 |
-
assert (
|
1582 |
-
num_head_channels != -1
|
1583 |
-
), "Either num_heads or num_head_channels has to be set"
|
1584 |
-
|
1585 |
-
if num_head_channels == -1:
|
1586 |
-
assert (
|
1587 |
-
num_heads != -1
|
1588 |
-
), "Either num_heads or num_head_channels has to be set"
|
1589 |
-
|
1590 |
-
self.in_channels = in_channels
|
1591 |
-
self.ctrl_channels = ctrl_channels
|
1592 |
-
self.model_channels = model_channels
|
1593 |
-
self.out_channels = out_channels
|
1594 |
-
if isinstance(transformer_depth, int):
|
1595 |
-
transformer_depth = len(channel_mult) * [transformer_depth]
|
1596 |
-
elif isinstance(transformer_depth, ListConfig):
|
1597 |
-
transformer_depth = list(transformer_depth)
|
1598 |
-
transformer_depth_middle = default(
|
1599 |
-
transformer_depth_middle, transformer_depth[-1]
|
1600 |
-
)
|
1601 |
-
|
1602 |
-
if isinstance(num_res_blocks, int):
|
1603 |
-
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
1604 |
-
else:
|
1605 |
-
if len(num_res_blocks) != len(channel_mult):
|
1606 |
-
raise ValueError(
|
1607 |
-
"provide num_res_blocks either as an int (globally constant) or "
|
1608 |
-
"as a list/tuple (per-level) with the same length as channel_mult"
|
1609 |
-
)
|
1610 |
-
self.num_res_blocks = num_res_blocks
|
1611 |
-
# self.num_res_blocks = num_res_blocks
|
1612 |
-
if disable_self_attentions is not None:
|
1613 |
-
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
1614 |
-
assert len(disable_self_attentions) == len(channel_mult)
|
1615 |
-
if num_attention_blocks is not None:
|
1616 |
-
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
1617 |
-
assert all(
|
1618 |
-
map(
|
1619 |
-
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
1620 |
-
range(len(num_attention_blocks)),
|
1621 |
-
)
|
1622 |
-
)
|
1623 |
-
print(
|
1624 |
-
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
1625 |
-
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
1626 |
-
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
1627 |
-
f"attention will still not be set."
|
1628 |
-
) # todo: convert to warning
|
1629 |
-
|
1630 |
-
self.attention_resolutions = attention_resolutions
|
1631 |
-
self.dropout = dropout
|
1632 |
-
self.channel_mult = channel_mult
|
1633 |
-
self.conv_resample = conv_resample
|
1634 |
-
self.num_classes = num_classes
|
1635 |
-
self.use_checkpoint = use_checkpoint
|
1636 |
-
if use_fp16:
|
1637 |
-
print("WARNING: use_fp16 was dropped and has no effect anymore.")
|
1638 |
-
# self.dtype = th.float16 if use_fp16 else th.float32
|
1639 |
-
self.num_heads = num_heads
|
1640 |
-
self.num_head_channels = num_head_channels
|
1641 |
-
self.num_heads_upsample = num_heads_upsample
|
1642 |
-
self.predict_codebook_ids = n_embed is not None
|
1643 |
-
|
1644 |
-
assert use_fairscale_checkpoint != use_checkpoint or not (
|
1645 |
-
use_checkpoint or use_fairscale_checkpoint
|
1646 |
-
)
|
1647 |
-
|
1648 |
-
self.use_fairscale_checkpoint = False
|
1649 |
-
checkpoint_wrapper_fn = (
|
1650 |
-
partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu)
|
1651 |
-
if self.use_fairscale_checkpoint
|
1652 |
-
else lambda x: x
|
1653 |
-
)
|
1654 |
-
|
1655 |
-
time_embed_dim = model_channels * 4
|
1656 |
-
self.time_embed = checkpoint_wrapper_fn(
|
1657 |
-
nn.Sequential(
|
1658 |
-
linear(model_channels, time_embed_dim),
|
1659 |
-
nn.SiLU(),
|
1660 |
-
linear(time_embed_dim, time_embed_dim),
|
1661 |
-
)
|
1662 |
-
)
|
1663 |
-
|
1664 |
-
if self.num_classes is not None:
|
1665 |
-
if isinstance(self.num_classes, int):
|
1666 |
-
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
1667 |
-
elif self.num_classes == "continuous":
|
1668 |
-
print("setting up linear c_adm embedding layer")
|
1669 |
-
self.label_emb = nn.Linear(1, time_embed_dim)
|
1670 |
-
elif self.num_classes == "timestep":
|
1671 |
-
self.label_emb = checkpoint_wrapper_fn(
|
1672 |
-
nn.Sequential(
|
1673 |
-
Timestep(model_channels),
|
1674 |
-
nn.Sequential(
|
1675 |
-
linear(model_channels, time_embed_dim),
|
1676 |
-
nn.SiLU(),
|
1677 |
-
linear(time_embed_dim, time_embed_dim),
|
1678 |
-
),
|
1679 |
-
)
|
1680 |
-
)
|
1681 |
-
elif self.num_classes == "sequential":
|
1682 |
-
assert adm_in_channels is not None
|
1683 |
-
self.label_emb = nn.Sequential(
|
1684 |
-
nn.Sequential(
|
1685 |
-
linear(adm_in_channels, time_embed_dim),
|
1686 |
-
nn.SiLU(),
|
1687 |
-
linear(time_embed_dim, time_embed_dim),
|
1688 |
-
)
|
1689 |
-
)
|
1690 |
-
else:
|
1691 |
-
raise ValueError()
|
1692 |
-
|
1693 |
-
self.input_blocks = nn.ModuleList(
|
1694 |
-
[
|
1695 |
-
TimestepEmbedSequential(
|
1696 |
-
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
1697 |
-
)
|
1698 |
-
]
|
1699 |
-
)
|
1700 |
-
if self.ctrl_channels > 0:
|
1701 |
-
self.add_input_block = TimestepEmbedSequential(
|
1702 |
-
conv_nd(dims, ctrl_channels, 16, 3, padding=1),
|
1703 |
-
nn.SiLU(),
|
1704 |
-
conv_nd(dims, 16, 16, 3, padding=1),
|
1705 |
-
nn.SiLU(),
|
1706 |
-
conv_nd(dims, 16, 32, 3, padding=1),
|
1707 |
-
nn.SiLU(),
|
1708 |
-
conv_nd(dims, 32, 32, 3, padding=1),
|
1709 |
-
nn.SiLU(),
|
1710 |
-
conv_nd(dims, 32, 96, 3, padding=1),
|
1711 |
-
nn.SiLU(),
|
1712 |
-
conv_nd(dims, 96, 96, 3, padding=1),
|
1713 |
-
nn.SiLU(),
|
1714 |
-
conv_nd(dims, 96, 256, 3, padding=1),
|
1715 |
-
nn.SiLU(),
|
1716 |
-
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
|
1717 |
-
)
|
1718 |
-
|
1719 |
-
self._feature_size = model_channels
|
1720 |
-
input_block_chans = [model_channels]
|
1721 |
-
ch = model_channels
|
1722 |
-
ds = 1
|
1723 |
-
for level, mult in enumerate(channel_mult):
|
1724 |
-
for nr in range(self.num_res_blocks[level]):
|
1725 |
-
layers = [
|
1726 |
-
checkpoint_wrapper_fn(
|
1727 |
-
ResBlock(
|
1728 |
-
ch,
|
1729 |
-
time_embed_dim,
|
1730 |
-
dropout,
|
1731 |
-
out_channels=mult * model_channels,
|
1732 |
-
dims=dims,
|
1733 |
-
use_checkpoint=use_checkpoint,
|
1734 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
1735 |
-
)
|
1736 |
-
)
|
1737 |
-
]
|
1738 |
-
ch = mult * model_channels
|
1739 |
-
if ds in attention_resolutions:
|
1740 |
-
if num_head_channels == -1:
|
1741 |
-
dim_head = ch // num_heads
|
1742 |
-
else:
|
1743 |
-
num_heads = ch // num_head_channels
|
1744 |
-
dim_head = num_head_channels
|
1745 |
-
if legacy:
|
1746 |
-
# num_heads = 1
|
1747 |
-
dim_head = (
|
1748 |
-
ch // num_heads
|
1749 |
-
if use_spatial_transformer
|
1750 |
-
else num_head_channels
|
1751 |
-
)
|
1752 |
-
if exists(disable_self_attentions):
|
1753 |
-
disabled_sa = disable_self_attentions[level]
|
1754 |
-
else:
|
1755 |
-
disabled_sa = False
|
1756 |
-
|
1757 |
-
if (
|
1758 |
-
not exists(num_attention_blocks)
|
1759 |
-
or nr < num_attention_blocks[level]
|
1760 |
-
):
|
1761 |
-
layers.append(
|
1762 |
-
checkpoint_wrapper_fn(
|
1763 |
-
AttentionBlock(
|
1764 |
-
ch,
|
1765 |
-
use_checkpoint=use_checkpoint,
|
1766 |
-
num_heads=num_heads,
|
1767 |
-
num_head_channels=dim_head,
|
1768 |
-
use_new_attention_order=use_new_attention_order,
|
1769 |
-
)
|
1770 |
-
)
|
1771 |
-
if not use_spatial_transformer
|
1772 |
-
else checkpoint_wrapper_fn(
|
1773 |
-
SpatialTransformer(
|
1774 |
-
ch,
|
1775 |
-
num_heads,
|
1776 |
-
dim_head,
|
1777 |
-
depth=transformer_depth[level],
|
1778 |
-
context_dim=context_dim,
|
1779 |
-
add_context_dim=add_context_dim,
|
1780 |
-
disable_self_attn=disabled_sa,
|
1781 |
-
use_linear=use_linear_in_transformer,
|
1782 |
-
attn_type=spatial_transformer_attn_type,
|
1783 |
-
use_checkpoint=use_checkpoint,
|
1784 |
-
)
|
1785 |
-
)
|
1786 |
-
)
|
1787 |
-
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
1788 |
-
self._feature_size += ch
|
1789 |
-
input_block_chans.append(ch)
|
1790 |
-
if level != len(channel_mult) - 1:
|
1791 |
-
out_ch = ch
|
1792 |
-
self.input_blocks.append(
|
1793 |
-
TimestepEmbedSequential(
|
1794 |
-
checkpoint_wrapper_fn(
|
1795 |
-
ResBlock(
|
1796 |
-
ch,
|
1797 |
-
time_embed_dim,
|
1798 |
-
dropout,
|
1799 |
-
out_channels=out_ch,
|
1800 |
-
dims=dims,
|
1801 |
-
use_checkpoint=use_checkpoint,
|
1802 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
1803 |
-
down=True,
|
1804 |
-
)
|
1805 |
-
)
|
1806 |
-
if resblock_updown
|
1807 |
-
else Downsample(
|
1808 |
-
ch, conv_resample, dims=dims, out_channels=out_ch
|
1809 |
-
)
|
1810 |
-
)
|
1811 |
-
)
|
1812 |
-
ch = out_ch
|
1813 |
-
input_block_chans.append(ch)
|
1814 |
-
ds *= 2
|
1815 |
-
self._feature_size += ch
|
1816 |
-
|
1817 |
-
if num_head_channels == -1:
|
1818 |
-
dim_head = ch // num_heads
|
1819 |
-
else:
|
1820 |
-
num_heads = ch // num_head_channels
|
1821 |
-
dim_head = num_head_channels
|
1822 |
-
if legacy:
|
1823 |
-
# num_heads = 1
|
1824 |
-
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
1825 |
-
self.middle_block = TimestepEmbedSequential(
|
1826 |
-
checkpoint_wrapper_fn(
|
1827 |
-
ResBlock(
|
1828 |
-
ch,
|
1829 |
-
time_embed_dim,
|
1830 |
-
dropout,
|
1831 |
-
dims=dims,
|
1832 |
-
use_checkpoint=use_checkpoint,
|
1833 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
1834 |
-
)
|
1835 |
-
),
|
1836 |
-
checkpoint_wrapper_fn(
|
1837 |
-
AttentionBlock(
|
1838 |
-
ch,
|
1839 |
-
use_checkpoint=use_checkpoint,
|
1840 |
-
num_heads=num_heads,
|
1841 |
-
num_head_channels=dim_head,
|
1842 |
-
use_new_attention_order=use_new_attention_order,
|
1843 |
-
)
|
1844 |
-
)
|
1845 |
-
if not use_spatial_transformer
|
1846 |
-
else checkpoint_wrapper_fn(
|
1847 |
-
SpatialTransformer( # always uses a self-attn
|
1848 |
-
ch,
|
1849 |
-
num_heads,
|
1850 |
-
dim_head,
|
1851 |
-
depth=transformer_depth_middle,
|
1852 |
-
context_dim=context_dim,
|
1853 |
-
add_context_dim=add_context_dim,
|
1854 |
-
disable_self_attn=disable_middle_self_attn,
|
1855 |
-
use_linear=use_linear_in_transformer,
|
1856 |
-
attn_type=spatial_transformer_attn_type,
|
1857 |
-
use_checkpoint=use_checkpoint,
|
1858 |
-
)
|
1859 |
-
),
|
1860 |
-
checkpoint_wrapper_fn(
|
1861 |
-
ResBlock(
|
1862 |
-
ch,
|
1863 |
-
time_embed_dim,
|
1864 |
-
dropout,
|
1865 |
-
dims=dims,
|
1866 |
-
use_checkpoint=use_checkpoint,
|
1867 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
1868 |
-
)
|
1869 |
-
),
|
1870 |
-
)
|
1871 |
-
self._feature_size += ch
|
1872 |
-
|
1873 |
-
self.output_blocks = nn.ModuleList([])
|
1874 |
-
for level, mult in list(enumerate(channel_mult))[::-1]:
|
1875 |
-
for i in range(self.num_res_blocks[level] + 1):
|
1876 |
-
ich = input_block_chans.pop()
|
1877 |
-
layers = [
|
1878 |
-
checkpoint_wrapper_fn(
|
1879 |
-
ResBlock(
|
1880 |
-
ch + ich,
|
1881 |
-
time_embed_dim,
|
1882 |
-
dropout,
|
1883 |
-
out_channels=model_channels * mult,
|
1884 |
-
dims=dims,
|
1885 |
-
use_checkpoint=use_checkpoint,
|
1886 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
1887 |
-
)
|
1888 |
-
)
|
1889 |
-
]
|
1890 |
-
ch = model_channels * mult
|
1891 |
-
if ds in attention_resolutions:
|
1892 |
-
if num_head_channels == -1:
|
1893 |
-
dim_head = ch // num_heads
|
1894 |
-
else:
|
1895 |
-
num_heads = ch // num_head_channels
|
1896 |
-
dim_head = num_head_channels
|
1897 |
-
if legacy:
|
1898 |
-
# num_heads = 1
|
1899 |
-
dim_head = (
|
1900 |
-
ch // num_heads
|
1901 |
-
if use_spatial_transformer
|
1902 |
-
else num_head_channels
|
1903 |
-
)
|
1904 |
-
if exists(disable_self_attentions):
|
1905 |
-
disabled_sa = disable_self_attentions[level]
|
1906 |
-
else:
|
1907 |
-
disabled_sa = False
|
1908 |
-
|
1909 |
-
if (
|
1910 |
-
not exists(num_attention_blocks)
|
1911 |
-
or i < num_attention_blocks[level]
|
1912 |
-
):
|
1913 |
-
layers.append(
|
1914 |
-
checkpoint_wrapper_fn(
|
1915 |
-
AttentionBlock(
|
1916 |
-
ch,
|
1917 |
-
use_checkpoint=use_checkpoint,
|
1918 |
-
num_heads=num_heads_upsample,
|
1919 |
-
num_head_channels=dim_head,
|
1920 |
-
use_new_attention_order=use_new_attention_order,
|
1921 |
-
)
|
1922 |
-
)
|
1923 |
-
if not use_spatial_transformer
|
1924 |
-
else checkpoint_wrapper_fn(
|
1925 |
-
SpatialTransformer(
|
1926 |
-
ch,
|
1927 |
-
num_heads,
|
1928 |
-
dim_head,
|
1929 |
-
depth=transformer_depth[level],
|
1930 |
-
context_dim=context_dim,
|
1931 |
-
add_context_dim=add_context_dim,
|
1932 |
-
disable_self_attn=disabled_sa,
|
1933 |
-
use_linear=use_linear_in_transformer,
|
1934 |
-
attn_type=spatial_transformer_attn_type,
|
1935 |
-
use_checkpoint=use_checkpoint,
|
1936 |
-
)
|
1937 |
-
)
|
1938 |
-
)
|
1939 |
-
if level and i == self.num_res_blocks[level]:
|
1940 |
-
out_ch = ch
|
1941 |
-
layers.append(
|
1942 |
-
checkpoint_wrapper_fn(
|
1943 |
-
ResBlock(
|
1944 |
-
ch,
|
1945 |
-
time_embed_dim,
|
1946 |
-
dropout,
|
1947 |
-
out_channels=out_ch,
|
1948 |
-
dims=dims,
|
1949 |
-
use_checkpoint=use_checkpoint,
|
1950 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
1951 |
-
up=True,
|
1952 |
-
)
|
1953 |
-
)
|
1954 |
-
if resblock_updown
|
1955 |
-
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
1956 |
-
)
|
1957 |
-
ds //= 2
|
1958 |
-
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
1959 |
-
self._feature_size += ch
|
1960 |
-
|
1961 |
-
self.out = checkpoint_wrapper_fn(
|
1962 |
-
nn.Sequential(
|
1963 |
-
normalization(ch),
|
1964 |
-
nn.SiLU(),
|
1965 |
-
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
1966 |
-
)
|
1967 |
-
)
|
1968 |
-
if self.predict_codebook_ids:
|
1969 |
-
self.id_predictor = checkpoint_wrapper_fn(
|
1970 |
-
nn.Sequential(
|
1971 |
-
normalization(ch),
|
1972 |
-
conv_nd(dims, model_channels, n_embed, 1),
|
1973 |
-
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
1974 |
-
)
|
1975 |
-
)
|
1976 |
-
|
1977 |
-
# cache attn map
|
1978 |
-
self.attn_type = attn_type
|
1979 |
-
self.attn_layers = attn_layers
|
1980 |
-
self.attn_map_cache = []
|
1981 |
-
for name, module in self.named_modules():
|
1982 |
-
if name.endswith(self.attn_type):
|
1983 |
-
item = {"name": name, "heads": module.heads, "size": None, "attn_map": None}
|
1984 |
-
self.attn_map_cache.append(item)
|
1985 |
-
module.attn_map_cache = item
|
1986 |
-
|
1987 |
-
def clear_attn_map(self):
|
1988 |
-
|
1989 |
-
for item in self.attn_map_cache:
|
1990 |
-
if item["attn_map"] is not None:
|
1991 |
-
del item["attn_map"]
|
1992 |
-
item["attn_map"] = None
|
1993 |
-
|
1994 |
-
def save_attn_map(self, save_name="temp", tokens=""):
|
1995 |
-
|
1996 |
-
attn_maps = []
|
1997 |
-
for item in self.attn_map_cache:
|
1998 |
-
name = item["name"]
|
1999 |
-
if any([name.startswith(block) for block in self.attn_layers]):
|
2000 |
-
heads = item["heads"]
|
2001 |
-
attn_maps.append(item["attn_map"].detach().cpu())
|
2002 |
-
|
2003 |
-
attn_map = th.stack(attn_maps, dim=0)
|
2004 |
-
attn_map = th.mean(attn_map, dim=0)
|
2005 |
-
|
2006 |
-
# attn_map: bh * n * l
|
2007 |
-
bh, n, l = attn_map.shape # bh: batch size * heads / n : pixel length(h*w) / l: token length
|
2008 |
-
attn_map = attn_map.reshape((-1,heads,n,l)).mean(dim=1)
|
2009 |
-
b = attn_map.shape[0]
|
2010 |
-
|
2011 |
-
h = w = int(n**0.5)
|
2012 |
-
attn_map = attn_map.permute(0,2,1).reshape((b,l,h,w)).numpy()
|
2013 |
-
|
2014 |
-
attn_map_i = attn_map[-1]
|
2015 |
-
|
2016 |
-
l = attn_map_i.shape[0]
|
2017 |
-
fig = plt.figure(figsize=(12, 8), dpi=300)
|
2018 |
-
for j in range(12):
|
2019 |
-
if j >= l: break
|
2020 |
-
ax = fig.add_subplot(3, 4, j+1)
|
2021 |
-
sns.heatmap(attn_map_i[j], square=True, xticklabels=False, yticklabels=False)
|
2022 |
-
if j < len(tokens):
|
2023 |
-
ax.set_title(tokens[j])
|
2024 |
-
fig.savefig(f"./temp/attn_map/attn_map_{save_name}.png")
|
2025 |
-
plt.close()
|
2026 |
-
|
2027 |
-
return attn_map_i
|
2028 |
-
|
2029 |
-
def forward(self, x, timesteps=None, context=None, add_context=None, y=None, **kwargs):
|
2030 |
-
"""
|
2031 |
-
Apply the model to an input batch.
|
2032 |
-
:param x: an [N x C x ...] Tensor of inputs.
|
2033 |
-
:param timesteps: a 1-D batch of timesteps.
|
2034 |
-
:param context: conditioning plugged in via crossattn
|
2035 |
-
:param y: an [N] Tensor of labels, if class-conditional.
|
2036 |
-
:return: an [N x C x ...] Tensor of outputs.
|
2037 |
-
"""
|
2038 |
-
assert (y is not None) == (
|
2039 |
-
self.num_classes is not None
|
2040 |
-
), "must specify y if and only if the model is class-conditional"
|
2041 |
-
|
2042 |
-
self.clear_attn_map()
|
2043 |
-
|
2044 |
-
hs = []
|
2045 |
-
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
2046 |
-
emb = self.time_embed(t_emb)
|
2047 |
-
|
2048 |
-
if self.num_classes is not None:
|
2049 |
-
assert y.shape[0] == x.shape[0]
|
2050 |
-
emb = emb + self.label_emb(y)
|
2051 |
-
|
2052 |
-
# h = x.type(self.dtype)
|
2053 |
h = x
|
2054 |
if self.ctrl_channels > 0:
|
2055 |
in_h, add_h = th.split(h, [self.in_channels, self.ctrl_channels], dim=1)
|
2056 |
-
|
2057 |
for i, module in enumerate(self.input_blocks):
|
2058 |
if self.ctrl_channels > 0 and i == 0:
|
2059 |
-
h = module(in_h, emb,
|
2060 |
else:
|
2061 |
-
h = module(h, emb,
|
2062 |
hs.append(h)
|
2063 |
-
h = self.middle_block(h, emb,
|
2064 |
for i, module in enumerate(self.output_blocks):
|
2065 |
h = th.cat([h, hs.pop()], dim=1)
|
2066 |
-
h = module(h, emb,
|
2067 |
h = h.type(x.dtype)
|
2068 |
|
2069 |
return self.out(h)
|
|
|
|
|
1 |
from abc import abstractmethod
|
|
|
2 |
from typing import Iterable
|
3 |
|
4 |
import numpy as np
|
|
|
10 |
from ...modules.attention import SpatialTransformer
|
11 |
from ...modules.diffusionmodules.util import (
|
12 |
avg_pool_nd,
|
|
|
13 |
conv_nd,
|
14 |
linear,
|
15 |
normalization,
|
|
|
19 |
from ...util import default, exists
|
20 |
|
21 |
|
22 |
+
class Timestep(nn.Module):
|
23 |
+
def __init__(self, dim):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
super().__init__()
|
25 |
+
self.dim = dim
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
def forward(self, t):
|
28 |
+
return timestep_embedding(t, self.dim)
|
29 |
+
|
30 |
|
31 |
class TimestepBlock(nn.Module):
|
32 |
"""
|
|
|
50 |
self,
|
51 |
x,
|
52 |
emb,
|
53 |
+
t_context=None,
|
54 |
+
v_context=None
|
|
|
|
|
|
|
|
|
|
|
55 |
):
|
56 |
for layer in self:
|
57 |
if isinstance(layer, TimestepBlock):
|
58 |
x = layer(x, emb)
|
59 |
elif isinstance(layer, SpatialTransformer):
|
60 |
+
x = layer(x, t_context, v_context)
|
61 |
else:
|
62 |
x = layer(x)
|
63 |
return x
|
|
|
102 |
return x
|
103 |
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
class Downsample(nn.Module):
|
106 |
"""
|
107 |
A downsampling layer with an optional convolution.
|
|
|
149 |
class ResBlock(TimestepBlock):
|
150 |
"""
|
151 |
A residual block that can optionally change the number of channels.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
"""
|
153 |
|
154 |
def __init__(
|
|
|
160 |
use_conv=False,
|
161 |
use_scale_shift_norm=False,
|
162 |
dims=2,
|
|
|
163 |
up=False,
|
164 |
down=False,
|
165 |
kernel_size=3,
|
166 |
exchange_temb_dims=False,
|
167 |
+
skip_t_emb=False
|
168 |
):
|
169 |
super().__init__()
|
170 |
self.channels = channels
|
|
|
172 |
self.dropout = dropout
|
173 |
self.out_channels = out_channels or channels
|
174 |
self.use_conv = use_conv
|
|
|
175 |
self.use_scale_shift_norm = use_scale_shift_norm
|
176 |
self.exchange_temb_dims = exchange_temb_dims
|
177 |
|
|
|
240 |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
241 |
|
242 |
def forward(self, x, emb):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
if self.updown:
|
244 |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
245 |
h = in_rest(x)
|
|
|
267 |
h = self.out_layers(h)
|
268 |
return self.skip_connection(x) + h
|
269 |
|
270 |
+
|
271 |
+
import seaborn as sns
|
272 |
+
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
|
275 |
+
class UnifiedUNetModel(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
def __init__(
|
278 |
self,
|
279 |
in_channels,
|
280 |
+
ctrl_channels,
|
281 |
model_channels,
|
282 |
out_channels,
|
283 |
num_res_blocks,
|
284 |
attention_resolutions,
|
285 |
dropout=0,
|
286 |
channel_mult=(1, 2, 4, 8),
|
287 |
+
save_attn_type=None,
|
288 |
+
save_attn_layers=[],
|
289 |
conv_resample=True,
|
290 |
dims=2,
|
291 |
+
use_label=None,
|
|
|
|
|
292 |
num_heads=-1,
|
293 |
num_head_channels=-1,
|
294 |
num_heads_upsample=-1,
|
295 |
use_scale_shift_norm=False,
|
296 |
resblock_updown=False,
|
297 |
+
transformer_depth=1,
|
298 |
+
t_context_dim=None,
|
299 |
+
v_context_dim=None,
|
|
|
|
|
|
|
|
|
300 |
num_attention_blocks=None,
|
|
|
301 |
use_linear_in_transformer=False,
|
|
|
302 |
adm_in_channels=None,
|
303 |
+
transformer_depth_middle=None
|
|
|
|
|
304 |
):
|
305 |
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
if num_heads_upsample == -1:
|
308 |
num_heads_upsample = num_heads
|
|
|
318 |
), "Either num_heads or num_head_channels has to be set"
|
319 |
|
320 |
self.in_channels = in_channels
|
321 |
+
self.ctrl_channels = ctrl_channels
|
322 |
self.model_channels = model_channels
|
323 |
self.out_channels = out_channels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
+
transformer_depth = len(channel_mult) * [transformer_depth]
|
326 |
+
transformer_depth_middle = default(transformer_depth_middle, transformer_depth[-1])
|
327 |
+
|
328 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
self.attention_resolutions = attention_resolutions
|
331 |
self.dropout = dropout
|
332 |
self.channel_mult = channel_mult
|
333 |
self.conv_resample = conv_resample
|
334 |
+
self.use_label = use_label
|
|
|
|
|
|
|
|
|
335 |
self.num_heads = num_heads
|
336 |
self.num_head_channels = num_head_channels
|
337 |
self.num_heads_upsample = num_heads_upsample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
time_embed_dim = model_channels * 4
|
340 |
+
self.time_embed = nn.Sequential(
|
341 |
+
linear(model_channels, time_embed_dim),
|
342 |
+
nn.SiLU(),
|
343 |
+
linear(time_embed_dim, time_embed_dim),
|
|
|
|
|
344 |
)
|
345 |
+
|
346 |
+
if self.use_label is not None:
|
347 |
+
self.label_emb = nn.Sequential(
|
348 |
+
nn.Sequential(
|
349 |
+
linear(adm_in_channels, time_embed_dim),
|
350 |
+
nn.SiLU(),
|
351 |
+
linear(time_embed_dim, time_embed_dim),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
)
|
353 |
+
)
|
|
|
354 |
|
355 |
self.input_blocks = nn.ModuleList(
|
356 |
[
|
|
|
359 |
)
|
360 |
]
|
361 |
)
|
362 |
+
|
363 |
+
if self.ctrl_channels > 0:
|
364 |
+
self.ctrl_block = TimestepEmbedSequential(
|
365 |
+
conv_nd(dims, ctrl_channels, 16, 3, padding=1),
|
366 |
+
nn.SiLU(),
|
367 |
+
conv_nd(dims, 16, 16, 3, padding=1),
|
368 |
+
nn.SiLU(),
|
369 |
+
conv_nd(dims, 16, 32, 3, padding=1),
|
370 |
+
nn.SiLU(),
|
371 |
+
conv_nd(dims, 32, 32, 3, padding=1),
|
372 |
+
nn.SiLU(),
|
373 |
+
conv_nd(dims, 32, 96, 3, padding=1),
|
374 |
+
nn.SiLU(),
|
375 |
+
conv_nd(dims, 96, 96, 3, padding=1),
|
376 |
+
nn.SiLU(),
|
377 |
+
conv_nd(dims, 96, 256, 3, padding=1),
|
378 |
+
nn.SiLU(),
|
379 |
+
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
|
380 |
+
)
|
381 |
+
|
382 |
self._feature_size = model_channels
|
383 |
input_block_chans = [model_channels]
|
384 |
ch = model_channels
|
|
|
386 |
for level, mult in enumerate(channel_mult):
|
387 |
for nr in range(self.num_res_blocks[level]):
|
388 |
layers = [
|
389 |
+
ResBlock(
|
390 |
+
ch,
|
391 |
+
time_embed_dim,
|
392 |
+
dropout,
|
393 |
+
out_channels=mult * model_channels,
|
394 |
+
dims=dims,
|
395 |
+
use_scale_shift_norm=use_scale_shift_norm
|
|
|
|
|
|
|
396 |
)
|
397 |
]
|
398 |
ch = mult * model_channels
|
|
|
402 |
else:
|
403 |
num_heads = ch // num_head_channels
|
404 |
dim_head = num_head_channels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
if (
|
406 |
not exists(num_attention_blocks)
|
407 |
or nr < num_attention_blocks[level]
|
408 |
):
|
409 |
layers.append(
|
410 |
+
SpatialTransformer(
|
411 |
+
ch,
|
412 |
+
num_heads,
|
413 |
+
dim_head,
|
414 |
+
depth=transformer_depth[level],
|
415 |
+
t_context_dim=t_context_dim,
|
416 |
+
v_context_dim=v_context_dim,
|
417 |
+
use_linear=use_linear_in_transformer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
)
|
419 |
)
|
420 |
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
|
|
424 |
out_ch = ch
|
425 |
self.input_blocks.append(
|
426 |
TimestepEmbedSequential(
|
427 |
+
ResBlock(
|
428 |
+
ch,
|
429 |
+
time_embed_dim,
|
430 |
+
dropout,
|
431 |
+
out_channels=out_ch,
|
432 |
+
dims=dims,
|
433 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
434 |
+
down=True
|
|
|
|
|
|
|
435 |
)
|
436 |
if resblock_updown
|
437 |
else Downsample(
|
|
|
449 |
else:
|
450 |
num_heads = ch // num_head_channels
|
451 |
dim_head = num_head_channels
|
452 |
+
|
|
|
|
|
453 |
self.middle_block = TimestepEmbedSequential(
|
454 |
+
ResBlock(
|
455 |
+
ch,
|
456 |
+
time_embed_dim,
|
457 |
+
dropout,
|
458 |
+
dims=dims,
|
459 |
+
use_scale_shift_norm=use_scale_shift_norm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
460 |
),
|
461 |
+
SpatialTransformer( # always uses a self-attn
|
462 |
+
ch,
|
463 |
+
num_heads,
|
464 |
+
dim_head,
|
465 |
+
depth=transformer_depth_middle,
|
466 |
+
t_context_dim=t_context_dim,
|
467 |
+
v_context_dim=v_context_dim,
|
468 |
+
use_linear=use_linear_in_transformer
|
|
|
469 |
),
|
470 |
+
ResBlock(
|
471 |
+
ch,
|
472 |
+
time_embed_dim,
|
473 |
+
dropout,
|
474 |
+
dims=dims,
|
475 |
+
use_scale_shift_norm=use_scale_shift_norm
|
476 |
+
)
|
477 |
)
|
478 |
+
|
479 |
self._feature_size += ch
|
480 |
|
481 |
self.output_blocks = nn.ModuleList([])
|
|
|
483 |
for i in range(self.num_res_blocks[level] + 1):
|
484 |
ich = input_block_chans.pop()
|
485 |
layers = [
|
486 |
+
ResBlock(
|
487 |
+
ch + ich,
|
488 |
+
time_embed_dim,
|
489 |
+
dropout,
|
490 |
+
out_channels=model_channels * mult,
|
491 |
+
dims=dims,
|
492 |
+
use_scale_shift_norm=use_scale_shift_norm
|
|
|
|
|
|
|
493 |
)
|
494 |
]
|
495 |
ch = model_channels * mult
|
|
|
499 |
else:
|
500 |
num_heads = ch // num_head_channels
|
501 |
dim_head = num_head_channels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
502 |
if (
|
503 |
not exists(num_attention_blocks)
|
504 |
or i < num_attention_blocks[level]
|
505 |
):
|
506 |
layers.append(
|
507 |
+
SpatialTransformer(
|
508 |
+
ch,
|
509 |
+
num_heads,
|
510 |
+
dim_head,
|
511 |
+
depth=transformer_depth[level],
|
512 |
+
t_context_dim=t_context_dim,
|
513 |
+
v_context_dim=v_context_dim,
|
514 |
+
use_linear=use_linear_in_transformer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
515 |
)
|
516 |
)
|
517 |
if level and i == self.num_res_blocks[level]:
|
518 |
out_ch = ch
|
519 |
layers.append(
|
520 |
+
ResBlock(
|
521 |
+
ch,
|
522 |
+
time_embed_dim,
|
523 |
+
dropout,
|
524 |
+
out_channels=out_ch,
|
525 |
+
dims=dims,
|
526 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
527 |
+
up=True
|
|
|
|
|
|
|
528 |
)
|
529 |
if resblock_updown
|
530 |
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
|
|
533 |
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
534 |
self._feature_size += ch
|
535 |
|
536 |
+
self.out = nn.Sequential(
|
537 |
+
normalization(ch),
|
538 |
+
nn.SiLU(),
|
539 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1))
|
|
|
|
|
540 |
)
|
541 |
+
|
542 |
+
# cache attn map
|
543 |
+
self.attn_type = save_attn_type
|
544 |
+
self.attn_layers = save_attn_layers
|
545 |
+
self.attn_map_cache = []
|
546 |
+
for name, module in self.named_modules():
|
547 |
+
if any([name.endswith(attn_type) for attn_type in self.attn_type]):
|
548 |
+
item = {"name": name, "heads": module.heads, "size": None, "attn_map": None}
|
549 |
+
self.attn_map_cache.append(item)
|
550 |
+
module.attn_map_cache = item
|
551 |
|
552 |
+
def clear_attn_map(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
553 |
|
554 |
+
for item in self.attn_map_cache:
|
555 |
+
if item["attn_map"] is not None:
|
556 |
+
del item["attn_map"]
|
557 |
+
item["attn_map"] = None
|
558 |
+
|
559 |
+
def save_attn_map(self, attn_type="t_attn", save_name="temp", tokens=""):
|
560 |
+
|
561 |
+
attn_maps = []
|
562 |
+
for item in self.attn_map_cache:
|
563 |
+
name = item["name"]
|
564 |
+
if any([name.startswith(block) for block in self.attn_layers]) and name.endswith(attn_type):
|
565 |
+
heads = item["heads"]
|
566 |
+
attn_maps.append(item["attn_map"].detach().cpu())
|
567 |
+
|
568 |
+
attn_map = th.stack(attn_maps, dim=0)
|
569 |
+
attn_map = th.mean(attn_map, dim=0)
|
570 |
+
|
571 |
+
# attn_map: bh * n * l
|
572 |
+
bh, n, l = attn_map.shape # bh: batch size * heads / n : pixel length(h*w) / l: token length
|
573 |
+
attn_map = attn_map.reshape((-1,heads,n,l)).mean(dim=1)
|
574 |
+
b = attn_map.shape[0]
|
575 |
+
|
576 |
+
h = w = int(n**0.5)
|
577 |
+
attn_map = attn_map.permute(0,2,1).reshape((b,l,h,w)).numpy()
|
578 |
+
attn_map_i = attn_map[-1]
|
579 |
+
|
580 |
+
l = attn_map_i.shape[0]
|
581 |
+
fig = plt.figure(figsize=(12, 8), dpi=300)
|
582 |
+
for j in range(12):
|
583 |
+
if j >= l: break
|
584 |
+
ax = fig.add_subplot(3, 4, j+1)
|
585 |
+
sns.heatmap(attn_map_i[j], square=True, xticklabels=False, yticklabels=False)
|
586 |
+
if j < len(tokens):
|
587 |
+
ax.set_title(tokens[j])
|
588 |
+
fig.savefig(f"temp/attn_map/attn_map_{save_name}.png")
|
589 |
+
plt.close()
|
590 |
+
|
591 |
+
return attn_map_i
|
592 |
+
|
593 |
+
def forward(self, x, timesteps=None, t_context=None, v_context=None, y=None, **kwargs):
|
594 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
595 |
assert (y is not None) == (
|
596 |
+
self.use_label is not None
|
597 |
), "must specify y if and only if the model is class-conditional"
|
598 |
+
|
599 |
+
self.clear_attn_map()
|
600 |
+
|
601 |
hs = []
|
602 |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
603 |
emb = self.time_embed(t_emb)
|
604 |
|
605 |
+
if self.use_label is not None:
|
606 |
assert y.shape[0] == x.shape[0]
|
607 |
emb = emb + self.label_emb(y)
|
608 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
609 |
h = x
|
610 |
if self.ctrl_channels > 0:
|
611 |
in_h, add_h = th.split(h, [self.in_channels, self.ctrl_channels], dim=1)
|
|
|
612 |
for i, module in enumerate(self.input_blocks):
|
613 |
if self.ctrl_channels > 0 and i == 0:
|
614 |
+
h = module(in_h, emb, t_context, v_context) + self.ctrl_block(add_h, emb, t_context, v_context)
|
615 |
else:
|
616 |
+
h = module(h, emb, t_context, v_context)
|
617 |
hs.append(h)
|
618 |
+
h = self.middle_block(h, emb, t_context, v_context)
|
619 |
for i, module in enumerate(self.output_blocks):
|
620 |
h = th.cat([h, hs.pop()], dim=1)
|
621 |
+
h = module(h, emb, t_context, v_context)
|
622 |
h = h.type(x.dtype)
|
623 |
|
624 |
return self.out(h)
|
sgm/modules/diffusionmodules/sampling.py
CHANGED
@@ -412,194 +412,12 @@ class EulerEDMSampler(EDMSampler):
|
|
412 |
inter = inter.cpu().numpy().transpose(1, 2, 0) * 255
|
413 |
inters.append(inter.astype(np.uint8))
|
414 |
|
415 |
-
print(f"Local losses: {local_losses}")
|
416 |
|
417 |
if len(inters) > 0:
|
418 |
imageio.mimsave(f"./temp/inters/{name}.gif", inters, 'GIF', duration=0.02)
|
419 |
|
420 |
return x
|
421 |
-
|
422 |
-
|
423 |
-
class EulerEDMDualSampler(EulerEDMSampler):
|
424 |
-
|
425 |
-
def prepare_sampling_loop(self, x, cond, uc_1=None, uc_2=None, num_steps=None):
|
426 |
-
sigmas = self.discretization(
|
427 |
-
self.num_steps if num_steps is None else num_steps, device=self.device
|
428 |
-
)
|
429 |
-
uc_1 = default(uc_1, cond)
|
430 |
-
uc_2 = default(uc_2, cond)
|
431 |
-
|
432 |
-
x *= torch.sqrt(1.0 + sigmas[0] ** 2.0)
|
433 |
-
num_sigmas = len(sigmas)
|
434 |
-
|
435 |
-
s_in = x.new_ones([x.shape[0]])
|
436 |
-
|
437 |
-
return x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2
|
438 |
-
|
439 |
-
def denoise(self, x, model, sigma, cond, uc_1, uc_2):
|
440 |
-
denoised = model.denoiser(model.model, *self.guider.prepare_inputs(x, sigma, cond, uc_1, uc_2))
|
441 |
-
denoised = self.guider(denoised, sigma)
|
442 |
-
return denoised
|
443 |
-
|
444 |
-
def get_init_noise(self, cfgs, model, cond, batch, uc_1=None, uc_2=None):
|
445 |
-
|
446 |
-
H, W = batch["target_size_as_tuple"][0]
|
447 |
-
shape = (cfgs.batch_size, cfgs.channel, int(H) // cfgs.factor, int(W) // cfgs.factor)
|
448 |
-
|
449 |
-
randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu))
|
450 |
-
x = randn.clone()
|
451 |
-
|
452 |
-
xs = []
|
453 |
-
self.verbose = False
|
454 |
-
for _ in range(cfgs.noise_iters):
|
455 |
-
|
456 |
-
x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2 = self.prepare_sampling_loop(
|
457 |
-
x, cond, uc_1, uc_2, num_steps=2
|
458 |
-
)
|
459 |
-
|
460 |
-
superv = {
|
461 |
-
"mask": batch["mask"] if "mask" in batch else None,
|
462 |
-
"seg_mask": batch["seg_mask"] if "seg_mask" in batch else None
|
463 |
-
}
|
464 |
-
|
465 |
-
local_losses = []
|
466 |
-
|
467 |
-
for i in self.get_sigma_gen(num_sigmas):
|
468 |
-
|
469 |
-
gamma = (
|
470 |
-
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
|
471 |
-
if self.s_tmin <= sigmas[i] <= self.s_tmax
|
472 |
-
else 0.0
|
473 |
-
)
|
474 |
-
|
475 |
-
x, inter, local_loss = self.sampler_step(
|
476 |
-
s_in * sigmas[i],
|
477 |
-
s_in * sigmas[i + 1],
|
478 |
-
model,
|
479 |
-
x,
|
480 |
-
cond,
|
481 |
-
superv,
|
482 |
-
uc_1,
|
483 |
-
uc_2,
|
484 |
-
gamma,
|
485 |
-
save_loss=True
|
486 |
-
)
|
487 |
-
|
488 |
-
local_losses.append(local_loss.item())
|
489 |
-
|
490 |
-
xs.append((randn, local_losses[-1]))
|
491 |
-
|
492 |
-
randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu))
|
493 |
-
x = randn.clone()
|
494 |
-
|
495 |
-
self.verbose = True
|
496 |
-
|
497 |
-
xs.sort(key = lambda x: x[-1])
|
498 |
-
|
499 |
-
if len(xs) > 0:
|
500 |
-
print(f"Init local loss: Best {xs[0][1]} Worst {xs[-1][1]}")
|
501 |
-
x = xs[0][0]
|
502 |
-
|
503 |
-
return x
|
504 |
-
|
505 |
-
def sampler_step(self, sigma, next_sigma, model, x, cond, batch=None, uc_1=None, uc_2=None,
|
506 |
-
gamma=0.0, alpha=0, iter_enabled=False, thres=None, update=False,
|
507 |
-
name=None, save_loss=False, save_attn=False, save_inter=False):
|
508 |
-
|
509 |
-
sigma_hat = sigma * (gamma + 1.0)
|
510 |
-
if gamma > 0:
|
511 |
-
eps = torch.randn_like(x) * self.s_noise
|
512 |
-
x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5
|
513 |
-
|
514 |
-
if update:
|
515 |
-
x = self.attend_and_excite(x, model, sigma_hat, cond, batch, alpha, iter_enabled, thres)
|
516 |
-
|
517 |
-
denoised = self.denoise(x, model, sigma_hat, cond, uc_1, uc_2)
|
518 |
-
denoised_decode = model.decode_first_stage(denoised) if save_inter else None
|
519 |
-
|
520 |
-
if save_loss:
|
521 |
-
local_loss = model.loss_fn.get_min_local_loss(model.model.diffusion_model.attn_map_cache, batch["mask"], batch["seg_mask"])
|
522 |
-
local_loss = local_loss[-local_loss.shape[0]//3:]
|
523 |
-
else:
|
524 |
-
local_loss = torch.zeros(1)
|
525 |
-
if save_attn:
|
526 |
-
attn_map = model.model.diffusion_model.save_attn_map(save_name=name, save_single=True)
|
527 |
-
self.save_segment_map(attn_map, tokens=batch["label"][0], save_name=name)
|
528 |
-
|
529 |
-
d = to_d(x, sigma_hat, denoised)
|
530 |
-
dt = append_dims(next_sigma - sigma_hat, x.ndim)
|
531 |
-
|
532 |
-
euler_step = self.euler_step(x, d, dt)
|
533 |
-
|
534 |
-
return euler_step, denoised_decode, local_loss
|
535 |
-
|
536 |
-
def __call__(self, model, x, cond, batch=None, uc_1=None, uc_2=None, num_steps=None, init_step=0,
|
537 |
-
name=None, aae_enabled=False, detailed=False):
|
538 |
-
|
539 |
-
x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2 = self.prepare_sampling_loop(
|
540 |
-
x, cond, uc_1, uc_2, num_steps
|
541 |
-
)
|
542 |
-
|
543 |
-
name = batch["name"][0]
|
544 |
-
inters = []
|
545 |
-
local_losses = []
|
546 |
-
scales = np.linspace(start=1.0, stop=0, num=num_sigmas)
|
547 |
-
iter_lst = np.linspace(start=5, stop=25, num=6, dtype=np.int32)
|
548 |
-
thres_lst = np.linspace(start=-0.5, stop=-0.8, num=6)
|
549 |
-
|
550 |
-
for i in self.get_sigma_gen(num_sigmas, init_step=init_step):
|
551 |
-
|
552 |
-
gamma = (
|
553 |
-
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
|
554 |
-
if self.s_tmin <= sigmas[i] <= self.s_tmax
|
555 |
-
else 0.0
|
556 |
-
)
|
557 |
-
|
558 |
-
alpha = 20 * np.sqrt(scales[i])
|
559 |
-
update = aae_enabled
|
560 |
-
save_loss = aae_enabled
|
561 |
-
save_attn = detailed and (i == (num_sigmas-1)//2)
|
562 |
-
save_inter = aae_enabled
|
563 |
-
|
564 |
-
if i in iter_lst:
|
565 |
-
iter_enabled = True
|
566 |
-
thres = thres_lst[list(iter_lst).index(i)]
|
567 |
-
else:
|
568 |
-
iter_enabled = False
|
569 |
-
thres = 0.0
|
570 |
-
|
571 |
-
x, inter, local_loss = self.sampler_step(
|
572 |
-
s_in * sigmas[i],
|
573 |
-
s_in * sigmas[i + 1],
|
574 |
-
model,
|
575 |
-
x,
|
576 |
-
cond,
|
577 |
-
batch,
|
578 |
-
uc_1,
|
579 |
-
uc_2,
|
580 |
-
gamma,
|
581 |
-
alpha=alpha,
|
582 |
-
iter_enabled=iter_enabled,
|
583 |
-
thres=thres,
|
584 |
-
update=update,
|
585 |
-
name=name,
|
586 |
-
save_loss=save_loss,
|
587 |
-
save_attn=save_attn,
|
588 |
-
save_inter=save_inter
|
589 |
-
)
|
590 |
-
|
591 |
-
local_losses.append(local_loss.item())
|
592 |
-
if inter is not None:
|
593 |
-
inter = torch.clamp((inter + 1.0) / 2.0, min=0.0, max=1.0)[0]
|
594 |
-
inter = inter.cpu().numpy().transpose(1, 2, 0) * 255
|
595 |
-
inters.append(inter.astype(np.uint8))
|
596 |
-
|
597 |
-
print(f"Local losses: {local_losses}")
|
598 |
-
|
599 |
-
if len(inters) > 0:
|
600 |
-
imageio.mimsave(f"./temp/inters/{name}.gif", inters, 'GIF', duration=0.1)
|
601 |
-
|
602 |
-
return x
|
603 |
|
604 |
|
605 |
class HeunEDMSampler(EDMSampler):
|
|
|
412 |
inter = inter.cpu().numpy().transpose(1, 2, 0) * 255
|
413 |
inters.append(inter.astype(np.uint8))
|
414 |
|
415 |
+
# print(f"Local losses: {local_losses}")
|
416 |
|
417 |
if len(inters) > 0:
|
418 |
imageio.mimsave(f"./temp/inters/{name}.gif", inters, 'GIF', duration=0.02)
|
419 |
|
420 |
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
|
422 |
|
423 |
class HeunEDMSampler(EDMSampler):
|
sgm/modules/diffusionmodules/sampling_utils.py
CHANGED
@@ -7,10 +7,7 @@ from ...util import append_dims
|
|
7 |
class NoDynamicThresholding:
|
8 |
def __call__(self, uncond, cond, scale):
|
9 |
return uncond + scale * (cond - uncond)
|
10 |
-
|
11 |
-
class DualThresholding: # Dual condition CFG (from instructPix2Pix)
|
12 |
-
def __call__(self, uncond_1, uncond_2, cond, scale):
|
13 |
-
return uncond_1 + scale[0] * (uncond_2 - uncond_1) + scale[1] * (cond - uncond_2)
|
14 |
|
15 |
def linear_multistep_coeff(order, t, i, j, epsrel=1e-4):
|
16 |
if order - 1 > i:
|
|
|
7 |
class NoDynamicThresholding:
|
8 |
def __call__(self, uncond, cond, scale):
|
9 |
return uncond + scale * (cond - uncond)
|
10 |
+
|
|
|
|
|
|
|
11 |
|
12 |
def linear_multistep_coeff(order, t, i, j, epsrel=1e-4):
|
13 |
if order - 1 > i:
|
sgm/modules/diffusionmodules/wrappers.py
CHANGED
@@ -28,8 +28,8 @@ class OpenAIWrapper(IdentityWrapper):
|
|
28 |
return self.diffusion_model(
|
29 |
x,
|
30 |
timesteps=t,
|
31 |
-
|
32 |
-
|
33 |
y=c.get("vector", None),
|
34 |
**kwargs
|
35 |
)
|
|
|
28 |
return self.diffusion_model(
|
29 |
x,
|
30 |
timesteps=t,
|
31 |
+
t_context=c.get("t_crossattn", None),
|
32 |
+
v_context=c.get("v_crossattn", None),
|
33 |
y=c.get("vector", None),
|
34 |
**kwargs
|
35 |
)
|
sgm/modules/encoders/modules.py
CHANGED
@@ -14,6 +14,7 @@ from transformers import (
|
|
14 |
ByT5Tokenizer,
|
15 |
CLIPTextModel,
|
16 |
CLIPTokenizer,
|
|
|
17 |
T5EncoderModel,
|
18 |
T5Tokenizer,
|
19 |
)
|
@@ -38,18 +39,19 @@ import pytorch_lightning as pl
|
|
38 |
from torchvision import transforms
|
39 |
from timm.models.vision_transformer import VisionTransformer
|
40 |
from safetensors.torch import load_file as load_safetensors
|
|
|
41 |
|
42 |
# disable warning
|
43 |
from transformers import logging
|
44 |
logging.set_verbosity_error()
|
45 |
|
46 |
class AbstractEmbModel(nn.Module):
|
47 |
-
def __init__(self
|
48 |
super().__init__()
|
49 |
self._is_trainable = None
|
50 |
self._ucg_rate = None
|
51 |
self._input_key = None
|
52 |
-
self.
|
53 |
|
54 |
@property
|
55 |
def is_trainable(self) -> bool:
|
@@ -63,6 +65,10 @@ class AbstractEmbModel(nn.Module):
|
|
63 |
def input_key(self) -> str:
|
64 |
return self._input_key
|
65 |
|
|
|
|
|
|
|
|
|
66 |
@is_trainable.setter
|
67 |
def is_trainable(self, value: bool):
|
68 |
self._is_trainable = value
|
@@ -75,6 +81,10 @@ class AbstractEmbModel(nn.Module):
|
|
75 |
def input_key(self, value: str):
|
76 |
self._input_key = value
|
77 |
|
|
|
|
|
|
|
|
|
78 |
@is_trainable.deleter
|
79 |
def is_trainable(self):
|
80 |
del self._is_trainable
|
@@ -87,8 +97,13 @@ class AbstractEmbModel(nn.Module):
|
|
87 |
def input_key(self):
|
88 |
del self._input_key
|
89 |
|
|
|
|
|
|
|
|
|
90 |
|
91 |
class GeneralConditioner(nn.Module):
|
|
|
92 |
OUTPUT_DIM2KEYS = {2: "vector", 3: "crossattn", 4: "concat", 5: "concat"}
|
93 |
KEY2CATDIM = {"vector": 1, "crossattn": 2, "concat": 1}
|
94 |
|
@@ -109,7 +124,8 @@ class GeneralConditioner(nn.Module):
|
|
109 |
f"Initialized embedder #{n}: {embedder.__class__.__name__} "
|
110 |
f"with {count_params(embedder, False)} params. Trainable: {embedder.is_trainable}"
|
111 |
)
|
112 |
-
|
|
|
113 |
if "input_key" in embconfig:
|
114 |
embedder.input_key = embconfig["input_key"]
|
115 |
elif "input_keys" in embconfig:
|
@@ -156,13 +172,10 @@ class GeneralConditioner(nn.Module):
|
|
156 |
if not isinstance(emb_out, (list, tuple)):
|
157 |
emb_out = [emb_out]
|
158 |
for emb in emb_out:
|
159 |
-
if embedder.
|
160 |
-
out_key =
|
161 |
else:
|
162 |
out_key = self.OUTPUT_DIM2KEYS[emb.dim()]
|
163 |
-
if embedder.input_key == "mask":
|
164 |
-
H, W = batch["image"].shape[-2:]
|
165 |
-
emb = nn.functional.interpolate(emb, (H//8, W//8))
|
166 |
if embedder.ucg_rate > 0.0 and embedder.legacy_ucg_val is None:
|
167 |
emb = (
|
168 |
expand_dims_like(
|
@@ -204,28 +217,6 @@ class GeneralConditioner(nn.Module):
|
|
204 |
return c, uc
|
205 |
|
206 |
|
207 |
-
class DualConditioner(GeneralConditioner):
|
208 |
-
|
209 |
-
def get_unconditional_conditioning(
|
210 |
-
self, batch_c, batch_uc_1=None, batch_uc_2=None, force_uc_zero_embeddings=None
|
211 |
-
):
|
212 |
-
if force_uc_zero_embeddings is None:
|
213 |
-
force_uc_zero_embeddings = []
|
214 |
-
ucg_rates = list()
|
215 |
-
for embedder in self.embedders:
|
216 |
-
ucg_rates.append(embedder.ucg_rate)
|
217 |
-
embedder.ucg_rate = 0.0
|
218 |
-
|
219 |
-
c = self(batch_c)
|
220 |
-
uc_1 = self(batch_uc_1, force_uc_zero_embeddings) if batch_uc_1 is not None else None
|
221 |
-
uc_2 = self(batch_uc_2, force_uc_zero_embeddings[:1]) if batch_uc_2 is not None else None
|
222 |
-
|
223 |
-
for embedder, rate in zip(self.embedders, ucg_rates):
|
224 |
-
embedder.ucg_rate = rate
|
225 |
-
|
226 |
-
return c, uc_1, uc_2
|
227 |
-
|
228 |
-
|
229 |
class InceptionV3(nn.Module):
|
230 |
"""Wrapper around the https://github.com/mseitzer/pytorch-fid inception
|
231 |
port with an additional squeeze at the end"""
|
@@ -409,7 +400,6 @@ class FrozenCLIPEmbedder(AbstractEmbModel):
|
|
409 |
|
410 |
def freeze(self):
|
411 |
self.transformer = self.transformer.eval()
|
412 |
-
|
413 |
for param in self.parameters():
|
414 |
param.requires_grad = False
|
415 |
|
@@ -694,24 +684,24 @@ class FrozenOpenCLIPImageEmbedder(AbstractEmbModel):
|
|
694 |
if self.output_tokens:
|
695 |
z, tokens = z[0], z[1]
|
696 |
z = z.to(image.dtype)
|
697 |
-
if self.ucg_rate > 0.0 and not no_dropout and not (self.max_crops > 0):
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
if self.unsqueeze_dim:
|
716 |
z = z[:, None, :]
|
717 |
if self.output_tokens:
|
@@ -807,7 +797,7 @@ class FrozenCLIPT5Encoder(AbstractEmbModel):
|
|
807 |
return [clip_z, t5_z]
|
808 |
|
809 |
|
810 |
-
class SpatialRescaler(
|
811 |
def __init__(
|
812 |
self,
|
813 |
n_stages=1,
|
@@ -846,6 +836,9 @@ class SpatialRescaler(nn.Module):
|
|
846 |
padding=kernel_size // 2,
|
847 |
)
|
848 |
self.wrap_video = wrap_video
|
|
|
|
|
|
|
849 |
|
850 |
def forward(self, x):
|
851 |
if self.wrap_video and x.ndim == 5:
|
|
|
14 |
ByT5Tokenizer,
|
15 |
CLIPTextModel,
|
16 |
CLIPTokenizer,
|
17 |
+
CLIPVisionModel,
|
18 |
T5EncoderModel,
|
19 |
T5Tokenizer,
|
20 |
)
|
|
|
39 |
from torchvision import transforms
|
40 |
from timm.models.vision_transformer import VisionTransformer
|
41 |
from safetensors.torch import load_file as load_safetensors
|
42 |
+
from torchvision.utils import save_image
|
43 |
|
44 |
# disable warning
|
45 |
from transformers import logging
|
46 |
logging.set_verbosity_error()
|
47 |
|
48 |
class AbstractEmbModel(nn.Module):
|
49 |
+
def __init__(self):
|
50 |
super().__init__()
|
51 |
self._is_trainable = None
|
52 |
self._ucg_rate = None
|
53 |
self._input_key = None
|
54 |
+
self._emb_key = None
|
55 |
|
56 |
@property
|
57 |
def is_trainable(self) -> bool:
|
|
|
65 |
def input_key(self) -> str:
|
66 |
return self._input_key
|
67 |
|
68 |
+
@property
|
69 |
+
def emb_key(self) -> str:
|
70 |
+
return self._emb_key
|
71 |
+
|
72 |
@is_trainable.setter
|
73 |
def is_trainable(self, value: bool):
|
74 |
self._is_trainable = value
|
|
|
81 |
def input_key(self, value: str):
|
82 |
self._input_key = value
|
83 |
|
84 |
+
@emb_key.setter
|
85 |
+
def emb_key(self, value: str):
|
86 |
+
self._emb_key = value
|
87 |
+
|
88 |
@is_trainable.deleter
|
89 |
def is_trainable(self):
|
90 |
del self._is_trainable
|
|
|
97 |
def input_key(self):
|
98 |
del self._input_key
|
99 |
|
100 |
+
@emb_key.deleter
|
101 |
+
def emb_key(self):
|
102 |
+
del self._emb_key
|
103 |
+
|
104 |
|
105 |
class GeneralConditioner(nn.Module):
|
106 |
+
|
107 |
OUTPUT_DIM2KEYS = {2: "vector", 3: "crossattn", 4: "concat", 5: "concat"}
|
108 |
KEY2CATDIM = {"vector": 1, "crossattn": 2, "concat": 1}
|
109 |
|
|
|
124 |
f"Initialized embedder #{n}: {embedder.__class__.__name__} "
|
125 |
f"with {count_params(embedder, False)} params. Trainable: {embedder.is_trainable}"
|
126 |
)
|
127 |
+
if "emb_key" in embconfig:
|
128 |
+
embedder.emb_key = embconfig["emb_key"]
|
129 |
if "input_key" in embconfig:
|
130 |
embedder.input_key = embconfig["input_key"]
|
131 |
elif "input_keys" in embconfig:
|
|
|
172 |
if not isinstance(emb_out, (list, tuple)):
|
173 |
emb_out = [emb_out]
|
174 |
for emb in emb_out:
|
175 |
+
if embedder.emb_key is not None:
|
176 |
+
out_key = embedder.emb_key
|
177 |
else:
|
178 |
out_key = self.OUTPUT_DIM2KEYS[emb.dim()]
|
|
|
|
|
|
|
179 |
if embedder.ucg_rate > 0.0 and embedder.legacy_ucg_val is None:
|
180 |
emb = (
|
181 |
expand_dims_like(
|
|
|
217 |
return c, uc
|
218 |
|
219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
class InceptionV3(nn.Module):
|
221 |
"""Wrapper around the https://github.com/mseitzer/pytorch-fid inception
|
222 |
port with an additional squeeze at the end"""
|
|
|
400 |
|
401 |
def freeze(self):
|
402 |
self.transformer = self.transformer.eval()
|
|
|
403 |
for param in self.parameters():
|
404 |
param.requires_grad = False
|
405 |
|
|
|
684 |
if self.output_tokens:
|
685 |
z, tokens = z[0], z[1]
|
686 |
z = z.to(image.dtype)
|
687 |
+
# if self.ucg_rate > 0.0 and not no_dropout and not (self.max_crops > 0):
|
688 |
+
# z = (
|
689 |
+
# torch.bernoulli(
|
690 |
+
# (1.0 - self.ucg_rate) * torch.ones(z.shape[0], device=z.device)
|
691 |
+
# )[:, None]
|
692 |
+
# * z
|
693 |
+
# )
|
694 |
+
# if tokens is not None:
|
695 |
+
# tokens = (
|
696 |
+
# expand_dims_like(
|
697 |
+
# torch.bernoulli(
|
698 |
+
# (1.0 - self.ucg_rate)
|
699 |
+
# * torch.ones(tokens.shape[0], device=tokens.device)
|
700 |
+
# ),
|
701 |
+
# tokens,
|
702 |
+
# )
|
703 |
+
# * tokens
|
704 |
+
# )
|
705 |
if self.unsqueeze_dim:
|
706 |
z = z[:, None, :]
|
707 |
if self.output_tokens:
|
|
|
797 |
return [clip_z, t5_z]
|
798 |
|
799 |
|
800 |
+
class SpatialRescaler(AbstractEmbModel):
|
801 |
def __init__(
|
802 |
self,
|
803 |
n_stages=1,
|
|
|
836 |
padding=kernel_size // 2,
|
837 |
)
|
838 |
self.wrap_video = wrap_video
|
839 |
+
|
840 |
+
def freeze(self):
|
841 |
+
pass
|
842 |
|
843 |
def forward(self, x):
|
844 |
if self.wrap_video and x.ndim == 5:
|
temp/attn_map/attn_map_3.png
ADDED
temp/attn_map/attn_map_4.png
ADDED
temp/attn_map/attn_map_5.png
ADDED
temp/seg_map/seg_3.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff197cf810e4ba2d26b76265d48530ff03c7b753e1ae6b0b7dfc8d010801df26
|
3 |
+
size 20608
|
temp/seg_map/seg_4.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc96f8f8a39aa63faa8ece0d8f758520a41d59b881926a9ddcacb6f5d46099dd
|
3 |
+
size 20608
|
temp/seg_map/seg_5.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16f008e62ab6b2b5b1ca1f58390808b8c9096edb6ddd85570f17232c441114f2
|
3 |
+
size 24704
|
util.py
CHANGED
@@ -3,34 +3,6 @@ from omegaconf import OmegaConf
|
|
3 |
from sgm.util import instantiate_from_config
|
4 |
from sgm.modules.diffusionmodules.sampling import *
|
5 |
|
6 |
-
SD_XL_BASE_RATIOS = {
|
7 |
-
"0.5": (704, 1408),
|
8 |
-
"0.52": (704, 1344),
|
9 |
-
"0.57": (768, 1344),
|
10 |
-
"0.6": (768, 1280),
|
11 |
-
"0.68": (832, 1216),
|
12 |
-
"0.72": (832, 1152),
|
13 |
-
"0.78": (896, 1152),
|
14 |
-
"0.82": (896, 1088),
|
15 |
-
"0.88": (960, 1088),
|
16 |
-
"0.94": (960, 1024),
|
17 |
-
"1.0": (1024, 1024),
|
18 |
-
"1.07": (1024, 960),
|
19 |
-
"1.13": (1088, 960),
|
20 |
-
"1.21": (1088, 896),
|
21 |
-
"1.29": (1152, 896),
|
22 |
-
"1.38": (1152, 832),
|
23 |
-
"1.46": (1216, 832),
|
24 |
-
"1.67": (1280, 768),
|
25 |
-
"1.75": (1344, 768),
|
26 |
-
"1.91": (1344, 704),
|
27 |
-
"2.0": (1408, 704),
|
28 |
-
"2.09": (1472, 704),
|
29 |
-
"2.4": (1536, 640),
|
30 |
-
"2.5": (1600, 640),
|
31 |
-
"2.89": (1664, 576),
|
32 |
-
"3.0": (1728, 576),
|
33 |
-
}
|
34 |
|
35 |
def init_model(cfgs):
|
36 |
|
@@ -43,8 +15,7 @@ def init_model(cfgs):
|
|
43 |
if cfgs.type == "train":
|
44 |
model.train()
|
45 |
else:
|
46 |
-
|
47 |
-
model.to(torch.device("cuda", index=cfgs.gpu))
|
48 |
model.eval()
|
49 |
model.freeze()
|
50 |
|
@@ -56,40 +27,22 @@ def init_sampling(cfgs):
|
|
56 |
"target": "sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization",
|
57 |
}
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
)
|
76 |
-
else:
|
77 |
-
guider_config = {
|
78 |
-
"target": "sgm.modules.diffusionmodules.guiders.VanillaCFG",
|
79 |
-
"params": {"scale": cfgs.scale[0]},
|
80 |
-
}
|
81 |
-
|
82 |
-
sampler = EulerEDMSampler(
|
83 |
-
num_steps=cfgs.steps,
|
84 |
-
discretization_config=discretization_config,
|
85 |
-
guider_config=guider_config,
|
86 |
-
s_churn=0.0,
|
87 |
-
s_tmin=0.0,
|
88 |
-
s_tmax=999.0,
|
89 |
-
s_noise=1.0,
|
90 |
-
verbose=True,
|
91 |
-
device=torch.device("cuda", index=cfgs.gpu)
|
92 |
-
)
|
93 |
|
94 |
return sampler
|
95 |
|
@@ -109,29 +62,17 @@ def deep_copy(batch):
|
|
109 |
def prepare_batch(cfgs, batch):
|
110 |
|
111 |
for key in batch:
|
112 |
-
if isinstance(batch[key], torch.Tensor)
|
113 |
batch[key] = batch[key].to(torch.device("cuda", index=cfgs.gpu))
|
114 |
|
115 |
-
|
116 |
-
batch_uc = deep_copy(batch)
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
else:
|
121 |
-
batch_uc["txt"] = ["" for _ in range(len(batch["txt"]))]
|
122 |
-
|
123 |
-
if "label" in batch:
|
124 |
-
batch_uc["label"] = ["" for _ in range(len(batch["label"]))]
|
125 |
-
|
126 |
-
return batch, batch_uc, None
|
127 |
-
|
128 |
else:
|
129 |
-
|
130 |
-
batch_uc_2 = deep_copy(batch)
|
131 |
-
|
132 |
-
batch_uc_1["ref"] = torch.zeros_like(batch["ref"])
|
133 |
-
batch_uc_2["ref"] = torch.zeros_like(batch["ref"])
|
134 |
|
135 |
-
|
|
|
136 |
|
137 |
-
|
|
|
3 |
from sgm.util import instantiate_from_config
|
4 |
from sgm.modules.diffusionmodules.sampling import *
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def init_model(cfgs):
|
8 |
|
|
|
15 |
if cfgs.type == "train":
|
16 |
model.train()
|
17 |
else:
|
18 |
+
model.to(torch.device("cuda", index=cfgs.gpu))
|
|
|
19 |
model.eval()
|
20 |
model.freeze()
|
21 |
|
|
|
27 |
"target": "sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization",
|
28 |
}
|
29 |
|
30 |
+
guider_config = {
|
31 |
+
"target": "sgm.modules.diffusionmodules.guiders.VanillaCFG",
|
32 |
+
"params": {"scale": cfgs.scale[0]},
|
33 |
+
}
|
34 |
+
|
35 |
+
sampler = EulerEDMSampler(
|
36 |
+
num_steps=cfgs.steps,
|
37 |
+
discretization_config=discretization_config,
|
38 |
+
guider_config=guider_config,
|
39 |
+
s_churn=0.0,
|
40 |
+
s_tmin=0.0,
|
41 |
+
s_tmax=999.0,
|
42 |
+
s_noise=1.0,
|
43 |
+
verbose=True,
|
44 |
+
device=torch.device("cuda", index=cfgs.gpu)
|
45 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
return sampler
|
48 |
|
|
|
62 |
def prepare_batch(cfgs, batch):
|
63 |
|
64 |
for key in batch:
|
65 |
+
if isinstance(batch[key], torch.Tensor):
|
66 |
batch[key] = batch[key].to(torch.device("cuda", index=cfgs.gpu))
|
67 |
|
68 |
+
batch_uc = deep_copy(batch)
|
|
|
69 |
|
70 |
+
if "ntxt" in batch:
|
71 |
+
batch_uc["txt"] = batch["ntxt"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
else:
|
73 |
+
batch_uc["txt"] = ["" for _ in range(len(batch["txt"]))]
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
if "label" in batch:
|
76 |
+
batch_uc["label"] = ["" for _ in range(len(batch["label"]))]
|
77 |
|
78 |
+
return batch, batch_uc
|