UDiffText / app.py
ZYMPKU's picture
temp
021709c
raw
history blame
8.76 kB
import cv2
import torch
import os, glob
import numpy as np
import gradio as gr
from PIL import Image
from omegaconf import OmegaConf
from contextlib import nullcontext
from pytorch_lightning import seed_everything
from os.path import join as ospj
from util import *
def predict(cfgs, model, sampler, batch):
context = nullcontext if cfgs.aae_enabled else torch.no_grad
with context():
batch, batch_uc_1, batch_uc_2 = prepare_batch(cfgs, batch)
if cfgs.dual_conditioner:
c, uc_1, uc_2 = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc_1=batch_uc_1,
batch_uc_2=batch_uc_2,
force_uc_zero_embeddings=cfgs.force_uc_zero_embeddings,
)
else:
c, uc_1 = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc_1,
force_uc_zero_embeddings=cfgs.force_uc_zero_embeddings,
)
if cfgs.dual_conditioner:
x = sampler.get_init_noise(cfgs, model, cond=c, batch=batch, uc_1=uc_1, uc_2=uc_2)
samples_z = sampler(model, x, cond=c, batch=batch, uc_1=uc_1, uc_2=uc_2, init_step=0,
aae_enabled = cfgs.aae_enabled, detailed = cfgs.detailed)
else:
x = sampler.get_init_noise(cfgs, model, cond=c, batch=batch, uc=uc_1)
samples_z = sampler(model, x, cond=c, batch=batch, uc=uc_1, init_step=0,
aae_enabled = cfgs.aae_enabled, detailed = cfgs.detailed)
samples_x = model.decode_first_stage(samples_z)
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
return samples, samples_z
def demo_predict(input_blk, text, num_samples, steps, scale, seed, show_detail):
global cfgs, global_index
global_index += 1
if num_samples > 1: cfgs.noise_iters = 0
cfgs.batch_size = num_samples
cfgs.steps = steps
cfgs.scale[0] = scale
cfgs.detailed = show_detail
seed_everything(seed)
sampler = init_sampling(cfgs)
image = input_blk["image"]
mask = input_blk["mask"]
image = cv2.resize(image, (cfgs.W, cfgs.H))
mask = cv2.resize(mask, (cfgs.W, cfgs.H))
mask = (mask == 0).astype(np.int32)
image = torch.from_numpy(image.transpose(2,0,1)).to(dtype=torch.float32) / 127.5 - 1.0
mask = torch.from_numpy(mask.transpose(2,0,1)).to(dtype=torch.float32).mean(dim=0, keepdim=True)
masked = image * mask
mask = 1 - mask
seg_mask = torch.cat((torch.ones(len(text)), torch.zeros(cfgs.seq_len-len(text))))
# additional cond
txt = f"\"{text}\""
original_size_as_tuple = torch.tensor((cfgs.H, cfgs.W))
crop_coords_top_left = torch.tensor((0, 0))
target_size_as_tuple = torch.tensor((cfgs.H, cfgs.W))
image = torch.tile(image[None], (num_samples, 1, 1, 1))
mask = torch.tile(mask[None], (num_samples, 1, 1, 1))
masked = torch.tile(masked[None], (num_samples, 1, 1, 1))
seg_mask = torch.tile(seg_mask[None], (num_samples, 1))
original_size_as_tuple = torch.tile(original_size_as_tuple[None], (num_samples, 1))
crop_coords_top_left = torch.tile(crop_coords_top_left[None], (num_samples, 1))
target_size_as_tuple = torch.tile(target_size_as_tuple[None], (num_samples, 1))
text = [text for i in range(num_samples)]
txt = [txt for i in range(num_samples)]
name = [str(global_index) for i in range(num_samples)]
batch = {
"image": image,
"mask": mask,
"masked": masked,
"seg_mask": seg_mask,
"label": text,
"txt": txt,
"original_size_as_tuple": original_size_as_tuple,
"crop_coords_top_left": crop_coords_top_left,
"target_size_as_tuple": target_size_as_tuple,
"name": name
}
samples, samples_z = predict(cfgs, model, sampler, batch)
samples = samples.cpu().numpy().transpose(0, 2, 3, 1) * 255
results = [Image.fromarray(sample.astype(np.uint8)) for sample in samples]
if cfgs.detailed:
sections = []
attn_map = Image.open(f"./temp/attn_map/attn_map_{global_index}.png")
seg_maps = np.load(f"./temp/seg_map/seg_{global_index}.npy")
for i, seg_map in enumerate(seg_maps):
seg_map = cv2.resize(seg_map, (cfgs.W, cfgs.H))
sections.append((seg_map, text[0][i]))
seg = (results[0], sections)
else:
attn_map = None
seg = None
return results, attn_map, seg
if __name__ == "__main__":
os.makedirs("./temp/attn_map", exist_ok=True)
os.makedirs("./temp/seg_map", exist_ok=True)
cfgs = OmegaConf.load("./configs/demo.yaml")
model = init_model(cfgs)
global_index = 0
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.HTML(
"""
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
<h1 style="font-weight: 600; font-size: 2rem; margin: 0rem">
UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models
</h1>
<h3 style="font-weight: 450; font-size: 1rem; margin: 0rem">
<a href='https://arxiv.org/pdf/******'><img src='https://img.shields.io/badge/Arxiv-******-DF826C'></a>
<a href='https://github.com/ZYM-PKU/UDiffText'><img src='https://img.shields.io/badge/Code-UDiffText-D0F288'></a>
<a href='https://udifftext.github.io'><img src='https://img.shields.io/badge/Project-UDiffText-8ADAB2'></a>
</h3>
<h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
Our proposed UDiffText is capable of synthesizing accurate and harmonious text in either synthetic or real-word images, thus can be applied to tasks like scene text editing (a), arbitrary text generation (b) and accurate T2I generation (c)
</h2>
<div align=center><img src="file/demo/teaser.png" alt="UDiffText" width="80%"></div>
</div>
"""
)
with gr.Row():
with gr.Column():
input_blk = gr.Image(source='upload', tool='sketch', type="numpy", label="Input", height=512)
text = gr.Textbox(label="Text to render:", info="the text you want to render at the masked region")
run_button = gr.Button(variant="primary")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", info="number of generated images, locked as 1", minimum=1, maximum=1, value=1, step=1)
steps = gr.Slider(label="Steps", info ="denoising sampling steps", minimum=1, maximum=200, value=50, step=1)
scale = gr.Slider(label="Guidance Scale", info="the scale of classifier-free guidance (CFG)", minimum=0.0, maximum=10.0, value=4.0, step=0.1)
seed = gr.Slider(label="Seed", info="random seed for noise initialization", minimum=0, maximum=2147483647, step=1, randomize=True)
show_detail = gr.Checkbox(label="Show Detail", info="show the additional visualization results", value=True)
with gr.Column():
gallery = gr.Gallery(label="Output", height=512, preview=True)
with gr.Accordion("Visualization results", open=True):
with gr.Tab(label="Attention Maps"):
gr.Markdown("### Attention maps for each character (extracted from middle blocks at intermediate sampling step):")
attn_map = gr.Image(show_label=False, show_download_button=False)
with gr.Tab(label="Segmentation Maps"):
gr.Markdown("### Character-level segmentation maps (using upscaled attention maps):")
seg_map = gr.AnnotatedImage(height=384, show_label=False, show_download_button=False)
# examples
examples = []
example_paths = sorted(glob.glob(ospj("./demo/examples", "*")))
for example_path in example_paths:
label = example_path.split(os.sep)[-1].split(".")[0].split("_")[0]
examples.append([example_path, label])
gr.Markdown("## Examples:")
gr.Examples(
examples=examples,
inputs=[input_blk, text]
)
run_button.click(fn=demo_predict, inputs=[input_blk, text, num_samples, steps, scale, seed, show_detail], outputs=[gallery, attn_map, seg_map])
block.launch()