MiVOLO / mivolo /data /dataset /reader_age_gender.py
admin
sync
319d3b5
raw
history blame
17.4 kB
import logging
import os
from functools import partial
from multiprocessing.pool import ThreadPool
from typing import Dict, List, Optional, Tuple
import cv2
import numpy as np
from mivolo.data.data_reader import AnnotType, PictureInfo, get_all_files, read_csv_annotation_file
from mivolo.data.misc import IOU, class_letterbox, cropout_black_parts
from timm.data.readers.reader import Reader
from tqdm import tqdm
CROP_ROUND_TOL = 0.3
MIN_PERSON_SIZE = 100
MIN_PERSON_CROP_AFTERCUT_RATIO = 0.4
_logger = logging.getLogger("ReaderAgeGender")
class ReaderAgeGender(Reader):
"""
Reader for almost original imdb-wiki cleaned dataset.
Two changes:
1. Your annotation must be in ./annotation subdir of dataset root
2. Images must be in images subdir
"""
def __init__(
self,
images_path,
annotations_path,
split="validation",
target_size=224,
min_size=5,
seed=1234,
with_persons=False,
min_person_size=MIN_PERSON_SIZE,
disable_faces=False,
only_age=False,
min_person_aftercut_ratio=MIN_PERSON_CROP_AFTERCUT_RATIO,
crop_round_tol=CROP_ROUND_TOL,
):
super().__init__()
self.with_persons = with_persons
self.disable_faces = disable_faces
self.only_age = only_age
# can be only black for now, even though it's not very good with further normalization
self.crop_out_color = (0, 0, 0)
self.empty_crop = np.ones((target_size, target_size, 3)) * self.crop_out_color
self.empty_crop = self.empty_crop.astype(np.uint8)
self.min_person_size = min_person_size
self.min_person_aftercut_ratio = min_person_aftercut_ratio
self.crop_round_tol = crop_round_tol
self.split = split
self.min_size = min_size
self.seed = seed
self.target_size = target_size
# Reading annotations. Can be multiple files if annotations_path dir
self._ann: Dict[str, List[PictureInfo]] = {} # list of samples for each image
self._associated_objects: Dict[str, Dict[int, List[List[int]]]] = {}
self._faces_list: List[Tuple[str, int]] = [] # samples from this list will be loaded in __getitem__
self._read_annotations(images_path, annotations_path)
_logger.info(f"Dataset length: {len(self._faces_list)} crops")
def __getitem__(self, index):
return self._read_img_and_label(index)
def __len__(self):
return len(self._faces_list)
def _filename(self, index, basename=False, absolute=False):
img_p = self._faces_list[index][0]
return os.path.basename(img_p) if basename else img_p
def _read_annotations(self, images_path, csvs_path):
self._ann = {}
self._faces_list = []
self._associated_objects = {}
csvs = get_all_files(csvs_path, [".csv"])
csvs = [c for c in csvs if self.split in os.path.basename(c)]
# load annotations per image
for csv in csvs:
db, ann_type = read_csv_annotation_file(csv, images_path)
if self.with_persons and ann_type != AnnotType.PERSONS:
raise ValueError(
f"Annotation type in file {csv} contains no persons, "
f"but annotations with persons are requested."
)
self._ann.update(db)
if len(self._ann) == 0:
raise ValueError("Annotations are empty!")
self._ann, self._associated_objects = self.prepare_annotations()
images_list = list(self._ann.keys())
for img_path in images_list:
for index, image_sample_info in enumerate(self._ann[img_path]):
assert image_sample_info.has_gt(
self.only_age
), "Annotations must be checked with self.prepare_annotations() func"
self._faces_list.append((img_path, index))
def _read_img_and_label(self, index):
if not isinstance(index, int):
raise TypeError("ReaderAgeGender expected index to be integer")
img_p, face_index = self._faces_list[index]
ann: PictureInfo = self._ann[img_p][face_index]
img = cv2.imread(img_p)
face_empty = True
if ann.has_face_bbox and not (self.with_persons and self.disable_faces):
face_crop, face_empty = self._get_crop(ann.bbox, img)
if not self.with_persons and face_empty:
# model without persons
raise ValueError("Annotations must be checked with self.prepare_annotations() func")
if face_empty:
face_crop = self.empty_crop
person_empty = True
if self.with_persons or self.disable_faces:
if ann.has_person_bbox:
# cut off all associated objects from person crop
objects = self._associated_objects[img_p][face_index]
person_crop, person_empty = self._get_crop(
ann.person_bbox,
img,
crop_out_color=self.crop_out_color,
asced_objects=objects,
)
if face_empty and person_empty:
raise ValueError("Annotations must be checked with self.prepare_annotations() func")
if person_empty:
person_crop = self.empty_crop
return (face_crop, person_crop), [ann.age, ann.gender]
def _get_crop(
self,
bbox,
img,
asced_objects=None,
crop_out_color=(0, 0, 0),
) -> Tuple[np.ndarray, bool]:
empty_bbox = False
xmin, ymin, xmax, ymax = bbox
assert not (
ymax - ymin < self.min_size or xmax - xmin < self.min_size
), "Annotations must be checked with self.prepare_annotations() func"
crop = img[ymin:ymax, xmin:xmax]
if asced_objects:
# cut off other objects for person crop
crop, empty_bbox = _cropout_asced_objs(
asced_objects,
bbox,
crop.copy(),
crop_out_color=crop_out_color,
min_person_size=self.min_person_size,
crop_round_tol=self.crop_round_tol,
min_person_aftercut_ratio=self.min_person_aftercut_ratio,
)
if empty_bbox:
crop = self.empty_crop
crop = class_letterbox(crop, new_shape=(self.target_size, self.target_size), color=crop_out_color)
return crop, empty_bbox
def prepare_annotations(self):
good_anns: Dict[str, List[PictureInfo]] = {}
all_associated_objects: Dict[str, Dict[int, List[List[int]]]] = {}
if not self.with_persons:
# remove all persons
for img_path, bboxes in self._ann.items():
for sample in bboxes:
sample.clear_person_bbox()
# check dataset and collect associated_objects
verify_images_func = partial(
verify_images,
min_size=self.min_size,
min_person_size=self.min_person_size,
with_persons=self.with_persons,
disable_faces=self.disable_faces,
crop_round_tol=self.crop_round_tol,
min_person_aftercut_ratio=self.min_person_aftercut_ratio,
only_age=self.only_age,
)
num_threads = min(8, os.cpu_count())
all_msgs = []
broken = 0
skipped = 0
all_skipped_crops = 0
desc = "Check annotations..."
with ThreadPool(num_threads) as pool:
pbar = tqdm(
pool.imap_unordered(verify_images_func, list(self._ann.items())),
desc=desc,
total=len(self._ann),
)
for (img_info, associated_objects, msgs, is_corrupted, is_empty_annotations, skipped_crops) in pbar:
broken += 1 if is_corrupted else 0
all_msgs.extend(msgs)
all_skipped_crops += skipped_crops
skipped += 1 if is_empty_annotations else 0
if img_info is not None:
img_path, img_samples = img_info
good_anns[img_path] = img_samples
all_associated_objects.update({img_path: associated_objects})
pbar.desc = (
f"{desc} {skipped} images skipped ({all_skipped_crops} crops are incorrect); "
f"{broken} images corrupted"
)
pbar.close()
for msg in all_msgs:
print(msg)
print(f"\nLeft images: {len(good_anns)}")
return good_anns, all_associated_objects
def verify_images(
img_info,
min_size: int,
min_person_size: int,
with_persons: bool,
disable_faces: bool,
crop_round_tol: float,
min_person_aftercut_ratio: float,
only_age: bool,
):
# If crop is too small, if image can not be read or if image does not exist
# then filter out this sample
disable_faces = disable_faces and with_persons
kwargs = dict(
min_person_size=min_person_size,
disable_faces=disable_faces,
with_persons=with_persons,
crop_round_tol=crop_round_tol,
min_person_aftercut_ratio=min_person_aftercut_ratio,
only_age=only_age,
)
def bbox_correct(bbox, min_size, im_h, im_w) -> Tuple[bool, List[int]]:
ymin, ymax, xmin, xmax = _correct_bbox(bbox, im_h, im_w)
crop_h, crop_w = ymax - ymin, xmax - xmin
if crop_h < min_size or crop_w < min_size:
return False, [-1, -1, -1, -1]
bbox = [xmin, ymin, xmax, ymax]
return True, bbox
msgs = []
skipped_crops = 0
is_corrupted = False
is_empty_annotations = False
img_path: str = img_info[0]
img_samples: List[PictureInfo] = img_info[1]
try:
im_cv = cv2.imread(img_path)
im_h, im_w = im_cv.shape[:2]
except Exception:
msgs.append(f"Can not load image {img_path}")
is_corrupted = True
return None, {}, msgs, is_corrupted, is_empty_annotations, skipped_crops
out_samples: List[PictureInfo] = []
for sample in img_samples:
# correct face bbox
if sample.has_face_bbox:
is_correct, sample.bbox = bbox_correct(sample.bbox, min_size, im_h, im_w)
if not is_correct and sample.has_gt(only_age):
msgs.append("Small face. Passing..")
skipped_crops += 1
# correct person bbox
if sample.has_person_bbox:
is_correct, sample.person_bbox = bbox_correct(
sample.person_bbox, max(min_person_size, min_size), im_h, im_w
)
if not is_correct and sample.has_gt(only_age):
msgs.append(f"Small person {img_path}. Passing..")
skipped_crops += 1
if sample.has_face_bbox or sample.has_person_bbox:
out_samples.append(sample)
elif sample.has_gt(only_age):
msgs.append("Sample hs no face and no body. Passing..")
skipped_crops += 1
# sort that samples with undefined age and gender be the last
out_samples = sorted(out_samples, key=lambda sample: 1 if not sample.has_gt(only_age) else 0)
# for each person find other faces and persons bboxes, intersected with it
associated_objects: Dict[int, List[List[int]]] = find_associated_objects(out_samples, only_age=only_age)
out_samples, associated_objects, skipped_crops = filter_bad_samples(
out_samples, associated_objects, im_cv, msgs, skipped_crops, **kwargs
)
out_img_info: Optional[Tuple[str, List]] = (img_path, out_samples)
if len(out_samples) == 0:
out_img_info = None
is_empty_annotations = True
return out_img_info, associated_objects, msgs, is_corrupted, is_empty_annotations, skipped_crops
def filter_bad_samples(
out_samples: List[PictureInfo],
associated_objects: dict,
im_cv: np.ndarray,
msgs: List[str],
skipped_crops: int,
**kwargs,
):
with_persons, disable_faces, min_person_size, crop_round_tol, min_person_aftercut_ratio, only_age = (
kwargs["with_persons"],
kwargs["disable_faces"],
kwargs["min_person_size"],
kwargs["crop_round_tol"],
kwargs["min_person_aftercut_ratio"],
kwargs["only_age"],
)
# left only samples with annotations
inds = [sample_ind for sample_ind, sample in enumerate(out_samples) if sample.has_gt(only_age)]
out_samples, associated_objects = _filter_by_ind(out_samples, associated_objects, inds)
if kwargs["disable_faces"]:
# clear all faces
for ind, sample in enumerate(out_samples):
sample.clear_face_bbox()
# left only samples with person_bbox
inds = [sample_ind for sample_ind, sample in enumerate(out_samples) if sample.has_person_bbox]
out_samples, associated_objects = _filter_by_ind(out_samples, associated_objects, inds)
if with_persons or disable_faces:
# check that preprocessing func
# _cropout_asced_objs() return not empty person_image for each out sample
inds = []
for ind, sample in enumerate(out_samples):
person_empty = True
if sample.has_person_bbox:
xmin, ymin, xmax, ymax = sample.person_bbox
crop = im_cv[ymin:ymax, xmin:xmax]
# cut off all associated objects from person crop
_, person_empty = _cropout_asced_objs(
associated_objects[ind],
sample.person_bbox,
crop.copy(),
min_person_size=min_person_size,
crop_round_tol=crop_round_tol,
min_person_aftercut_ratio=min_person_aftercut_ratio,
)
if person_empty and not sample.has_face_bbox:
msgs.append("Small person after preprocessing. Passing..")
skipped_crops += 1
else:
inds.append(ind)
out_samples, associated_objects = _filter_by_ind(out_samples, associated_objects, inds)
assert len(associated_objects) == len(out_samples)
return out_samples, associated_objects, skipped_crops
def _filter_by_ind(out_samples, associated_objects, inds):
_associated_objects = {}
_out_samples = []
for ind, sample in enumerate(out_samples):
if ind in inds:
_associated_objects[len(_out_samples)] = associated_objects[ind]
_out_samples.append(sample)
return _out_samples, _associated_objects
def find_associated_objects(
image_samples: List[PictureInfo], iou_thresh=0.0001, only_age=False
) -> Dict[int, List[List[int]]]:
"""
For each person (which has gt age and gt gender) find other faces and persons bboxes, intersected with it
"""
associated_objects: Dict[int, List[List[int]]] = {}
for iindex, image_sample_info in enumerate(image_samples):
# add own face
associated_objects[iindex] = [image_sample_info.bbox] if image_sample_info.has_face_bbox else []
if not image_sample_info.has_person_bbox or not image_sample_info.has_gt(only_age):
# if sample has not gt => not be used
continue
iperson_box = image_sample_info.person_bbox
for jindex, other_image_sample in enumerate(image_samples):
if iindex == jindex:
continue
if other_image_sample.has_face_bbox:
jface_bbox = other_image_sample.bbox
iou = _get_iou(jface_bbox, iperson_box)
if iou >= iou_thresh:
associated_objects[iindex].append(jface_bbox)
if other_image_sample.has_person_bbox:
jperson_bbox = other_image_sample.person_bbox
iou = _get_iou(jperson_bbox, iperson_box)
if iou >= iou_thresh:
associated_objects[iindex].append(jperson_bbox)
return associated_objects
def _cropout_asced_objs(
asced_objects,
person_bbox,
crop,
min_person_size,
crop_round_tol,
min_person_aftercut_ratio,
crop_out_color=(0, 0, 0),
):
empty = False
xmin, ymin, xmax, ymax = person_bbox
for a_obj in asced_objects:
aobj_xmin, aobj_ymin, aobj_xmax, aobj_ymax = a_obj
aobj_ymin = int(max(aobj_ymin - ymin, 0))
aobj_xmin = int(max(aobj_xmin - xmin, 0))
aobj_ymax = int(min(aobj_ymax - ymin, ymax - ymin))
aobj_xmax = int(min(aobj_xmax - xmin, xmax - xmin))
crop[aobj_ymin:aobj_ymax, aobj_xmin:aobj_xmax] = crop_out_color
crop, cropped_ratio = cropout_black_parts(crop, crop_round_tol)
if (
crop.shape[0] < min_person_size or crop.shape[1] < min_person_size
) or cropped_ratio < min_person_aftercut_ratio:
crop = None
empty = True
return crop, empty
def _correct_bbox(bbox, h, w):
xmin, ymin, xmax, ymax = bbox
ymin = min(max(ymin, 0), h)
ymax = min(max(ymax, 0), h)
xmin = min(max(xmin, 0), w)
xmax = min(max(xmax, 0), w)
return ymin, ymax, xmin, xmax
def _get_iou(bbox1, bbox2):
xmin1, ymin1, xmax1, ymax1 = bbox1
xmin2, ymin2, xmax2, ymax2 = bbox2
iou = IOU(
[ymin1, xmin1, ymax1, xmax1],
[ymin2, xmin2, ymax2, xmax2],
)
return iou