Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import gradio as gr | |
import torchaudio | |
from transformers import AutoModel | |
import spaces | |
checkpoint_path = "./" | |
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True) | |
def restore_audio(input_audio): | |
# Load the audio file | |
waveform, sample_rate = torchaudio.load(input_audio) | |
# Calculate the duration of the audio (in seconds) | |
duration = waveform.shape[1] / sample_rate | |
# Output file path | |
output_path = "restored_output.wav" | |
if duration > 10: | |
model(input_audio, output_path, short=False) | |
else: | |
model(input_audio, output_path) # short=True by default | |
return output_path | |
with gr.Blocks() as demo: | |
gr.Markdown("# π Voice Restoration with Transformer-based Model") | |
gr.Markdown( | |
""" | |
Upload a degraded audio file or select an example, and the space will restore it using the **VoiceRestore** model! | |
Based on this [repo](https://github.com/skirdey/voicerestore) by [@Stan Kirdey](https://github.com/skirdey), | |
and the HF Transformers π€ [Model](https://huggingface.co/jadechoghari/VoiceRestore) by [@jadechoghari](https://github.com/jadechoghari). | |
The model returns optimized results for audio less than 10 seconds, however, it supports unlimited duration! | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("### π§ Select an Example or Upload Your Audio:") | |
input_audio = gr.Audio(label="Upload Degraded Audio", type="filepath") | |
gr.Examples( | |
examples=["example_input.wav", "example_16khz.wav", "example-distort-16khz.wav", "example-full-degrad.wav", "example-reverb-16khz.wav"], | |
inputs=input_audio, | |
label="Sample Degraded Audios" | |
), | |
cache_examples="lazy" | |
with gr.Column(): | |
gr.Markdown("### πΆ Restored Audio Output:") | |
output_audio = gr.Audio(label="Restored Audio", type="filepath") | |
with gr.Row(): | |
restore_btn = gr.Button("β¨ Restore Audio") | |
# Connect the button to the function | |
restore_btn.click(restore_audio, inputs=input_audio, outputs=output_audio) | |
# Launch the demo | |
demo.launch(debug=True) | |