File size: 11,611 Bytes
6519fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os
import gradio as gr  # type: ignore
from paddleocr import PaddleOCR  # type: ignore
from ultralytics import YOLO  # type: ignore
from pathlib import Path
from deep_sort_realtime.deepsort_tracker import DeepSort  # type: ignore
import cv2  # type: ignore
import numpy as np
import re
from internetarchive import download  # type: ignore
from tqdm import trange

download("anpr_weights", files=["anpr.pt"], verbose=True)  # type: ignore

download(
    "anpr_examples_202208",
    files=["test_image_1.jpg", "test_image_2.jpg", "test_image_3.jpeg", "test_video_1.mp4"],  # type: ignore
    verbose=True,
)

paddle = PaddleOCR(lang="en", use_angle_cls=True, show_log=False)

model = YOLO(model="./anpr_weights/anpr.pt", task="detect")


def detect_plates(src):
    predictions = model.predict(src, verbose=False)

    results = []

    for prediction in predictions:
        for box in prediction.boxes:
            det_confidence = box.conf.item()
            if det_confidence < 0.6:
                continue
            coords = [int(position) for position in (box.xyxy.view(1, 4)).tolist()[0]]
            results.append({"coords": coords, "det_conf": det_confidence})

    return results


def crop(img, coords):
    cropped = img[coords[1] : coords[3], coords[0] : coords[2]]
    return cropped


def preprocess_image(src):
    normalize = cv2.normalize(
        src, np.zeros((src.shape[0], src.shape[1])), 0, 255, cv2.NORM_MINMAX
    )
    denoise = cv2.fastNlMeansDenoisingColored(
        normalize, h=10, hColor=10, templateWindowSize=7, searchWindowSize=15
    )
    grayscale = cv2.cvtColor(denoise, cv2.COLOR_BGR2GRAY)
    threshold = cv2.threshold(grayscale, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
    return threshold


def ocr_plate(src):
    # Preprocess the image for better OCR results
    preprocessed = preprocess_image(src)

    # OCR the preprocessed image
    results = paddle.ocr(preprocessed, det=False, cls=True)

    # Get the best OCR result
    plate_text, ocr_confidence = max(
        results,
        key=lambda ocr_prediction: max(
            ocr_prediction,
            key=lambda ocr_prediction_result: ocr_prediction_result[1],  # type: ignore
        ),
    )[0]

    # Filter out anything but uppercase letters, digits, hypens and whitespace.
    # Also, remove hypens and whitespaces at the first and last positions
    plate_text_filtered = re.sub(r"[^A-Z0-9- ]", "", plate_text).strip("- ")

    return {"plate": plate_text_filtered, "ocr_conf": ocr_confidence}


def ocr_plates(src, det_predictions):
    results = []

    for det_prediction in det_predictions:
        plate_region = crop(src, det_prediction["coords"])
        ocr_prediction = ocr_plate(plate_region)
        results.append(ocr_prediction)

    return results


def plot_box(img, coords, label=None, color=[0, 150, 255], line_thickness=3):
    # Plots box on image
    c1, c2 = (int(coords[0]), int(coords[1])), (int(coords[2]), int(coords[3]))
    cv2.rectangle(img, c1, c2, color, thickness=line_thickness, lineType=cv2.LINE_AA)
    # Plots label on image, if exists
    if label:
        tf = max(line_thickness - 1, 1)  # font thickness
        t_size = cv2.getTextSize(label, 0, fontScale=line_thickness / 3, thickness=tf)[
            0
        ]
        c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
        cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA)  # filled
        cv2.putText(
            img,
            label,
            (c1[0], c1[1] - 2),
            0,
            line_thickness / 3,
            [225, 255, 255],
            thickness=tf,
            lineType=cv2.LINE_AA,
        )


def get_plates(src):
    det_predictions = detect_plates(src)
    ocr_predictions = ocr_plates(src, det_predictions)

    for det_prediction, ocr_prediction in zip(det_predictions, ocr_predictions):
        plot_box(src, det_prediction["coords"], ocr_prediction["plate"])

    return src, det_predictions, ocr_predictions


def predict_image(src):
    detected_image, det_predictions, ocr_predictions = get_plates(src)
    return detected_image


def predict_image_api(src):
    detected_image, det_predictions, ocr_predictions = get_plates(src)
    return ocr_predictions[0]["plate"]


def pascal_voc_to_coco(x1y1x2y2):
    x1, y1, x2, y2 = x1y1x2y2
    return [x1, y1, x2 - x1, y2 - y1]


def get_best_ocr(preds, rec_conf, ocr_res, track_id):
    for info in preds:
        # Check if it is current track id
        if info["track_id"] == track_id:
            # Check if the ocr confidence is maximum or not
            if info["ocr_conf"] < rec_conf:
                info["ocr_conf"] = rec_conf
                info["ocr_txt"] = ocr_res
            else:
                rec_conf = info["ocr_conf"]
                ocr_res = info["ocr_txt"]
            break
    return preds, rec_conf, ocr_res


def predict_video(src):
    output = f"{Path(src).stem}_detected{Path(src).suffix}"

    # Create a VideoCapture object
    video = cv2.VideoCapture(src)

    # Default resolutions of the frame are obtained. The default resolutions are system dependent.
    # We convert the resolutions from float to integer.
    width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = video.get(cv2.CAP_PROP_FPS)
    frames_total = int(video.get(cv2.CAP_PROP_FRAME_COUNT))

    # Define the codec and create VideoWriter object.
    temp = f"{Path(output).stem}_temp{Path(output).suffix}"
    export = cv2.VideoWriter(
        temp, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)
    )

    # Intializing tracker
    tracker = DeepSort()

    # Initializing some helper variables.
    preds = []
    total_obj = 0

    for i in trange(frames_total):
        ret, frame = video.read()
        if ret is True:
            # Run the ANPR algorithm
            det_predictions = detect_plates(frame)
            # Convert Pascal VOC detections to COCO
            bboxes = list(
                map(
                    lambda bbox: pascal_voc_to_coco(bbox),
                    [det_prediction["coords"] for det_prediction in det_predictions],
                )
            )

            if len(bboxes) > 0:
                # Storing all the required info in a list.
                detections = [
                    (bbox, score, "number_plate")
                    for bbox, score in zip(
                        bboxes,
                        [
                            det_prediction["det_conf"]
                            for det_prediction in det_predictions
                        ],
                    )
                ]

                # Applying tracker.
                # The tracker code flow: kalman filter -> target association(using hungarian algorithm) and appearance descriptor.
                tracks = tracker.update_tracks(detections, frame=frame)

                # Checking if tracks exist.
                for track in tracks:
                    if not track.is_confirmed() or track.time_since_update > 1:
                        continue

                    # Changing track bbox to top left, bottom right coordinates
                    bbox = [int(position) for position in list(track.to_tlbr())]

                    for i in range(len(bbox)):
                        if bbox[i] < 0:
                            bbox[i] = 0

                    # Cropping the license plate and applying the OCR.
                    plate_region = crop(frame, bbox)
                    ocr_prediction = ocr_plate(plate_region)
                    plate_text, ocr_confidence = (
                        ocr_prediction["plate"],
                        ocr_prediction["ocr_conf"],
                    )

                    # Storing the ocr output for corresponding track id.
                    output_frame = {
                        "track_id": track.track_id,
                        "ocr_txt": plate_text,
                        "ocr_conf": ocr_confidence,
                    }

                    # Appending track_id to list only if it does not exist in the list
                    # else looking for the current track in the list and updating the highest confidence of it.
                    if track.track_id not in list(
                        set(pred["track_id"] for pred in preds)
                    ):
                        total_obj += 1
                        preds.append(output_frame)
                    else:
                        preds, ocr_confidence, plate_text = get_best_ocr(
                            preds,
                            ocr_confidence,
                            plate_text,
                            track.track_id,
                        )

                    # Plotting the prediction.
                    plot_box(
                        frame,
                        bbox,
                        f"{str(track.track_id)}. {plate_text}",
                        color=[255, 150, 0],
                    )

            # Write the frame into the output file
            export.write(frame)
        else:
            break

    # When everything done, release the video capture and video write objects
    video.release()
    export.release()

    # Compressing the video for smaller size and web compatibility.
    os.system(
        f"ffmpeg -y -i {temp} -c:v libx264 -b:v 5000k -minrate 1000k -maxrate 8000k -pass 1 -c:a aac -f mp4 /dev/null && ffmpeg -y -i {temp} -c:v libx264 -b:v 5000k -minrate 1000k -maxrate 8000k -pass 2 -c:a aac -movflags faststart {output}"
    )
    os.system(f"rm -rf {temp} ffmpeg2pass-0.log ffmpeg2pass-0.log.mbtree")
    return output


with gr.Blocks() as demo:
    gr.Markdown('### <h3 align="center">Automatic Number Plate Recognition</h3>')
    gr.Markdown(
        "This AI was trained to detect and recognize number plates on vehicles."
    )
    with gr.Tabs():
        with gr.TabItem("Image"):
            with gr.Row():
                image_input = gr.Image()
                image_output = gr.Image()
                image_input.upload(
                    predict_image,
                    inputs=[image_input],
                    outputs=[image_output],
                )
            with gr.Row(visible=False):  # Prediction API
                api_image_input = gr.Image()
                api_prediction_output = gr.Textbox()
                api_image_input.upload(
                    predict_image_api,
                    inputs=[api_image_input],
                    outputs=[api_prediction_output],
                    api_name="predict",
                )
            gr.Examples(
                [
                    ["./anpr_examples_202208/test_image_1.jpg"],
                    ["./anpr_examples_202208/test_image_2.jpg"],
                    ["./anpr_examples_202208/test_image_3.jpeg"],
                ],
                [image_input],
                [image_output],
                predict_image,
                cache_examples=True,
            )
        with gr.TabItem("Video"):
            with gr.Row():
                video_input = gr.Video(format="mp4")
                video_output = gr.Video(format="mp4")
                video_input.upload(
                    predict_video, inputs=[video_input], outputs=[video_output]
                )
            gr.Examples(
                [["./anpr_examples_202208/test_video_1.mp4"]],
                [video_input],
                [video_output],
                predict_video,
                cache_examples=True,
            )
    gr.Markdown("[@itsyoboieltr](https://github.com/itsyoboieltr)")

demo.launch()