Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -20,7 +20,7 @@ vectara_instance = Vectara(
|
|
20 |
model = CrossEncoder('vectara/hallucination_evaluation_model')
|
21 |
|
22 |
# Streamlit app
|
23 |
-
st.title('RAG-Based App')
|
24 |
|
25 |
# Input message from the user
|
26 |
message = st.text_input('Enter your message')
|
@@ -80,11 +80,10 @@ if st.button('Process'):
|
|
80 |
# text_elements = []
|
81 |
# docs = vectara_instance.similarity_search(message)
|
82 |
# for source_idx, source_doc in enumerate(docs[:5]):
|
83 |
-
# source_name = f"Source {source_idx + 1}"
|
84 |
# text_elements.append(source_doc.page_content)
|
85 |
|
86 |
ans = f"{summary}\n HHEM Scores: {scores}"
|
87 |
st.text(ans)
|
88 |
-
st.text("Sources:")
|
89 |
# for text in text_elements:
|
90 |
# st.text(text)
|
|
|
20 |
model = CrossEncoder('vectara/hallucination_evaluation_model')
|
21 |
|
22 |
# Streamlit app
|
23 |
+
st.title('Fact-Checked Finance RAG-Based App Using Vectara HHEM')
|
24 |
|
25 |
# Input message from the user
|
26 |
message = st.text_input('Enter your message')
|
|
|
80 |
# text_elements = []
|
81 |
# docs = vectara_instance.similarity_search(message)
|
82 |
# for source_idx, source_doc in enumerate(docs[:5]):
|
|
|
83 |
# text_elements.append(source_doc.page_content)
|
84 |
|
85 |
ans = f"{summary}\n HHEM Scores: {scores}"
|
86 |
st.text(ans)
|
87 |
+
# st.text("Sources:")
|
88 |
# for text in text_elements:
|
89 |
# st.text(text)
|