Spaces:
Running
Running
isitraghav
commited on
Commit
·
4d6c1d0
1
Parent(s):
f5ae842
ok
Browse files
app.py
CHANGED
@@ -1,51 +1,60 @@
|
|
1 |
-
import gradio as gr
|
2 |
import pandas as pd
|
3 |
from sklearn.preprocessing import LabelEncoder
|
|
|
4 |
|
5 |
# Load data
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
data['Crop_Type'] = encode_crop.fit_transform(data['Crop_type'])
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
'
|
19 |
-
|
20 |
-
'
|
21 |
-
|
22 |
-
'Avail_Zn': 1,
|
23 |
-
'Avail_B': 0.5,
|
24 |
-
'Avail_Fe': 4,
|
25 |
-
'Avail_Cu': 0.3,
|
26 |
-
'Avail_Mn': 5
|
27 |
-
}
|
28 |
|
29 |
-
# application rates
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
# soil density and depth
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
|
47 |
-
#
|
48 |
-
def get_fertilizer_recommendation(row, land_size_m2, fallow_years):
|
49 |
deficiencies = []
|
50 |
fertilizer_amounts = {}
|
51 |
for nutrient, threshold in thresholds.items():
|
@@ -56,30 +65,42 @@ def get_fertilizer_recommendation(row, land_size_m2, fallow_years):
|
|
56 |
total_amount = base_amount_per_m2 * land_size_m2 * (1 + 0.1 * fallow_years)
|
57 |
fertilizer_amounts[nutrient_name] = round(total_amount, 2)
|
58 |
if deficiencies:
|
59 |
-
return 'Fertilizer needed for'
|
60 |
else:
|
61 |
-
return 'No deficiency', {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
demo = gr.Interface(
|
65 |
-
fn=lambda soil_type, crop_type, land_size_m2, fallow_years: get_fertilizer_recommendation(
|
66 |
-
data[(data['Soil_Type'] == encode_soil.transform([soil_type])[0]) & (data['Crop_Type'] == encode_crop.transform([crop_type])[0])].iloc[0],
|
67 |
-
land_size_m2,
|
68 |
-
fallow_years
|
69 |
-
),
|
70 |
-
inputs=[
|
71 |
-
gr.Dropdown(list(data['Soil_type'].unique()), label="Soil Type"), # Convert the numpy array to a list
|
72 |
-
gr.Dropdown(list(data['Crop_type'].unique()), label="Crop Type"), # Convert the numpy array to a list
|
73 |
-
gr.Number(label="Land Size (m²)"),
|
74 |
-
gr.Number(label="Fallow Years")
|
75 |
-
],
|
76 |
-
outputs=[
|
77 |
-
gr.Textbox(label="Recommendation"),
|
78 |
-
gr.JSON(label="Fertilizer Amounts (in kg)")
|
79 |
-
],
|
80 |
-
title="Fertilizer Recommendation App",
|
81 |
-
description="Get fertilizer recommendations based on soil type, crop type, land size, and fallow years."
|
82 |
-
)
|
83 |
|
84 |
if __name__ == "__main__":
|
85 |
-
|
|
|
|
|
1 |
import pandas as pd
|
2 |
from sklearn.preprocessing import LabelEncoder
|
3 |
+
import gradio as gr
|
4 |
|
5 |
# Load data
|
6 |
+
def load_data(file_path):
|
7 |
+
try:
|
8 |
+
data = pd.read_csv(file_path)
|
9 |
+
return data
|
10 |
+
except Exception as e:
|
11 |
+
print(f"Error loading data: {e}")
|
12 |
+
return None
|
|
|
13 |
|
14 |
+
# Encode soil and crop types
|
15 |
+
def encode_soil_crop(data):
|
16 |
+
encode_soil = LabelEncoder()
|
17 |
+
data['Soil_Type'] = encode_soil.fit_transform(data['Soil_type'])
|
18 |
+
encode_crop = LabelEncoder()
|
19 |
+
data['Crop_Type'] = encode_crop.fit_transform(data['Crop_type'])
|
20 |
+
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Define nutrient thresholds and application rates
|
23 |
+
def define_thresholds_application_rates():
|
24 |
+
thresholds = {
|
25 |
+
'Avail_P': 10,
|
26 |
+
'Exch_K': 50,
|
27 |
+
'Avail_Ca': 200,
|
28 |
+
'Avail_Mg': 50,
|
29 |
+
'Avail_S': 10,
|
30 |
+
'Avail_Zn': 1,
|
31 |
+
'Avail_B': 0.5,
|
32 |
+
'Avail_Fe': 4,
|
33 |
+
'Avail_Cu': 0.3,
|
34 |
+
'Avail_N': 5
|
35 |
+
}
|
36 |
+
application_rates = {
|
37 |
+
'P': 30,
|
38 |
+
'K': 50,
|
39 |
+
'Ca': 40,
|
40 |
+
'Mg': 20,
|
41 |
+
'S': 25,
|
42 |
+
'Zn': 5,
|
43 |
+
'B': 2,
|
44 |
+
'Fe': 10,
|
45 |
+
'Cu': 1,
|
46 |
+
'N': 4
|
47 |
+
}
|
48 |
+
return thresholds, application_rates
|
49 |
|
50 |
+
# Define soil density and depth
|
51 |
+
def define_soil_density_depth():
|
52 |
+
soil_density = 1800
|
53 |
+
soil_depth = 0.2
|
54 |
+
return soil_density, soil_depth
|
55 |
|
56 |
+
# Function to get fertilizer recommendation
|
57 |
+
def get_fertilizer_recommendation(row, land_size_m2, fallow_years, thresholds, application_rates):
|
58 |
deficiencies = []
|
59 |
fertilizer_amounts = {}
|
60 |
for nutrient, threshold in thresholds.items():
|
|
|
65 |
total_amount = base_amount_per_m2 * land_size_m2 * (1 + 0.1 * fallow_years)
|
66 |
fertilizer_amounts[nutrient_name] = round(total_amount, 2)
|
67 |
if deficiencies:
|
68 |
+
return 'Fertilizer needed for'', '.join(deficiencies), fertilizer_amounts
|
69 |
else:
|
70 |
+
return 'No deficiency, Manure Recommended', {}
|
71 |
+
|
72 |
+
# Gradio application
|
73 |
+
def gradio_application():
|
74 |
+
file_path = 'chittor_final1.csv'
|
75 |
+
data = load_data(file_path)
|
76 |
+
if data is not None:
|
77 |
+
data = encode_soil_crop(data)
|
78 |
+
thresholds, application_rates = define_thresholds_application_rates()
|
79 |
+
soil_density, soil_depth = define_soil_density_depth()
|
80 |
+
|
81 |
+
def fertilizer_recommendation(soil_type_input, crop_type_input, land_size_m2, fallow_years):
|
82 |
+
filtered_data = data[(data['Soil_type'] == soil_type_input) & (data['Crop_type'] == crop_type_input)]
|
83 |
+
if filtered_data.empty:
|
84 |
+
return "No data available for the given soil type and crop type."
|
85 |
+
else:
|
86 |
+
row = filtered_data.iloc[0]
|
87 |
+
recommendation, amounts = get_fertilizer_recommendation(row, land_size_m2, fallow_years, thresholds, application_rates)
|
88 |
+
return f"Recommendation: {recommendation}\nFertilizer Amounts (in kg):\n" + "\n".join(f"{nutrient}: {amount} kg" for nutrient, amount in amounts.items())
|
89 |
+
|
90 |
+
demo = gr.Interface(
|
91 |
+
fn=fertilizer_recommendation,
|
92 |
+
inputs=[
|
93 |
+
gr.Dropdown(label="Soil Type", choices=list(data['Soil_type'].unique())),
|
94 |
+
gr.Dropdown(label="Crop Type", choices=list(data['Crop_type'].unique())),
|
95 |
+
gr.Number(label="Land Size (m2)"),
|
96 |
+
gr.Number(label="Fallow Years")
|
97 |
+
],
|
98 |
+
outputs="text",
|
99 |
+
title="Fertilizer Recommendation App",
|
100 |
+
description="Enter the soil type, crop type, land size, and fallow years to get a fertilizer recommendation."
|
101 |
+
)
|
102 |
|
103 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
if __name__ == "__main__":
|
106 |
+
gradio_application()
|