Spaces:
Running
Running
isitraghav
commited on
Commit
·
4765a68
1
Parent(s):
33ad754
awd
Browse files
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.preprocessing import LabelEncoder
|
4 |
+
|
5 |
+
# Load data
|
6 |
+
data = pd.read_csv('chittor_final1.csv')
|
7 |
+
|
8 |
+
# Encoding
|
9 |
+
encode_soil = LabelEncoder()
|
10 |
+
data['Soil_Type'] = encode_soil.fit_transform(data['Soil_type'])
|
11 |
+
|
12 |
+
encode_crop = LabelEncoder()
|
13 |
+
data['Crop_Type'] = encode_crop.fit_transform(data['Crop_type'])
|
14 |
+
|
15 |
+
# nutrient thresholds
|
16 |
+
thresholds = {
|
17 |
+
'Avail_P': 10,
|
18 |
+
'Exch_K': 50,
|
19 |
+
'Avail_Ca': 200,
|
20 |
+
'Avail_Mg': 50,
|
21 |
+
'Avail_S': 10,
|
22 |
+
'Avail_Zn': 1,
|
23 |
+
'Avail_B': 0.5,
|
24 |
+
'Avail_Fe': 4,
|
25 |
+
'Avail_Cu': 0.3,
|
26 |
+
'Avail_Mn': 5
|
27 |
+
}
|
28 |
+
|
29 |
+
# application rates
|
30 |
+
application_rates = {
|
31 |
+
'P': 30,
|
32 |
+
'K': 50,
|
33 |
+
'Ca': 40,
|
34 |
+
'Mg': 20,
|
35 |
+
'S': 25,
|
36 |
+
'Zn': 5,
|
37 |
+
'B': 2,
|
38 |
+
'Fe': 10,
|
39 |
+
'Cu': 1,
|
40 |
+
'Mn': 4
|
41 |
+
}
|
42 |
+
|
43 |
+
# soil density and depth
|
44 |
+
soil_density = 1800
|
45 |
+
soil_depth = 0.2
|
46 |
+
|
47 |
+
# calculate amounts
|
48 |
+
def get_fertilizer_recommendation(row, land_size_m2, fallow_years):
|
49 |
+
deficiencies = []
|
50 |
+
fertilizer_amounts = {}
|
51 |
+
for nutrient, threshold in thresholds.items():
|
52 |
+
if row[nutrient] < threshold:
|
53 |
+
nutrient_name = nutrient.split('_')[-1]
|
54 |
+
deficiencies.append(nutrient_name)
|
55 |
+
base_amount_per_m2 = application_rates[nutrient_name] / 10000
|
56 |
+
total_amount = base_amount_per_m2 * land_size_m2 * (1 + 0.1 * fallow_years)
|
57 |
+
fertilizer_amounts[nutrient_name] = round(total_amount, 2)
|
58 |
+
if deficiencies:
|
59 |
+
return 'Fertilizer needed for'+ ', '.join(deficiencies), fertilizer_amounts
|
60 |
+
else:
|
61 |
+
return 'No deficiency', {}
|
62 |
+
|
63 |
+
# Gradio app
|
64 |
+
demo = gr.Interface(
|
65 |
+
fn=lambda soil_type, crop_type, land_size_m2, fallow_years: get_fertilizer_recommendation(
|
66 |
+
data[(data['Soil_Type'] == encode_soil.transform([soil_type])[0]) & (data['Crop_Type'] == encode_crop.transform([crop_type])[0])].iloc[0],
|
67 |
+
land_size_m2,
|
68 |
+
fallow_years
|
69 |
+
),
|
70 |
+
inputs=[
|
71 |
+
gr.Dropdown(list(data['Soil_type'].unique()), label="Soil Type"), # Convert the numpy array to a list
|
72 |
+
gr.Dropdown(list(data['Crop_type'].unique()), label="Crop Type"), # Convert the numpy array to a list
|
73 |
+
gr.Number(label="Land Size (m²)"),
|
74 |
+
gr.Number(label="Fallow Years")
|
75 |
+
],
|
76 |
+
outputs=[
|
77 |
+
gr.Textbox(label="Recommendation"),
|
78 |
+
gr.JSON(label="Fertilizer Amounts (in kg)")
|
79 |
+
],
|
80 |
+
title="Fertilizer Recommendation App",
|
81 |
+
description="Get fertilizer recommendations based on soil type, crop type, land size, and fallow years."
|
82 |
+
)
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
demo.launch()
|