Spaces:
Running
Running
mnist-model
Browse files- app.py +29 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image, ImageOps
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
|
7 |
+
model_path = hf_hub_download(repo_id="ishaqezaz/mnist-cnn", filename="mnist_v4.keras")
|
8 |
+
model = tf.keras.models.load_model(model_path)
|
9 |
+
|
10 |
+
def preprocess_image(img):
|
11 |
+
if isinstance(img, np.ndarray):
|
12 |
+
img = Image.fromarray(img)
|
13 |
+
|
14 |
+
img = img.convert("L")
|
15 |
+
img = ImageOps.invert(img)
|
16 |
+
img = img.resize((28, 28))
|
17 |
+
|
18 |
+
img = np.array(img) / 255.0
|
19 |
+
img = img.reshape(1, 28, 28, 1)
|
20 |
+
return img
|
21 |
+
|
22 |
+
def predict(img):
|
23 |
+
img = preprocess_image(img)
|
24 |
+
prediction = model.predict(img)
|
25 |
+
predicted_digit = np.argmax(prediction)
|
26 |
+
return f"Predicted Digit: {predicted_digit}"
|
27 |
+
|
28 |
+
interface = gr.Interface(fn=predict, inputs="image", outputs="text")
|
29 |
+
interface.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow
|
2 |
+
gradio
|
3 |
+
pillow
|
4 |
+
numpy
|
5 |
+
huggingface_hub
|