# -*- coding: utf-8 -*- """*A cross-lingual semantic similarity preserving hash for plain-text content (soft hash).* The ISCC Text-Code Semantic is a content-based compact binary code generated from multilingual text. !!! Warning This is a non-standard Proof of Concept implementation. Plain-text extraction from documents in various formats (especially PDF) may yield different results depending on the extraction tools being used. The [iscc-sdk](https://github.com/iscc/iscc-sdk) uses [Apache Tika](https://tika.apache.org) to extract text from documents for Text-Code generation. **Algorithm overview** - Split text into semantically coherent overlapping chunks. - Create vector embeddings of the chunks. - Average and binarize the chunk embeddings. - Encode as ISCC-UNIT of MainType SEMANTIC and SubType TEXT """ from loguru import logger as log from onnxruntime.capi.onnxruntime_pybind11_state import NoSuchFile from semantic_text_splitter import TextSplitter from tokenizers import Tokenizer from pathlib import Path from typing import Any import numpy as np import onnxruntime as rt from numpy.typing import NDArray from functools import cache import iscc_sct as sct HERE = Path(__file__).parent.absolute() __all__ = [ "code_text_semantic", "gen_text_code_semantic", "soft_hash_text_semantic", "embed_chunks", ] BIT_LEN_MAP = { 32: "0000", 64: "0001", 96: "0010", 128: "0011", 160: "0100", 192: "0101", 224: "0110", 256: "0111", } TOKENIZER_PATH = HERE / "tokenizer.json" MAINTYPE = "0001" # SEMANTIC SUBTYPE = "0000" # TEXT SCT_VERSION = "0000" # V0 def code_text_semantic(fp, **options): # type: (Path|str, Any) -> dict[str, Any] """ Generate ISCC Semantic-Code Text from a text file. NOTE: If you enable generating granular features with `features=True` those features will have the same bit-length as the generated ISCC-UNIT. :param fp: File path of plaintext file to process :param options: Custom processing options for overriding global options :key bits (int): Length of generated Semantic Text-Code in bits (default 64) :key characters (bool): Return document character count (default True). :key embedding (bool): Return global document embedding (default False). :key precision (int): Max fractional digits for embeddings (default 8). :key features (bool): Return granular document features (default False). :key offsets (bool): Return character offsets for granular features (default False). :key chunks (bool): Return text chunks (default False). :key max_tokens (int): Max tokens per chunk (default 127). :key overlap (int): Max tokens allowed to overlap between chunks (default 48). :key trim (int): Trim whitespace from chunks (default False). :return: Dict with ISCC processing results """ fp = Path(fp) return gen_text_code_semantic(fp.read_text(encoding="utf-8"), **options) def gen_text_code_semantic(text, **options): # type: (str, Any) -> dict """ Create an ISCC Semantic-Code Text from plaintext. :param str text: Plaint text for ISCC processing :param options: Custom processing options for overriding global options :key bits (int): Length of generated Semantic Text-Code in bits (default 64) :key characters (bool): Return document character count (default True). :key embedding (bool): Return global document embedding (default False). :key precision (int): Max fractional digits for embeddings (default 8). :key features (bool): Return granular document features (default False). :key offsets (bool): Return character offsets for granular features (default False). :key chunks (bool): Return text chunks (default False). :key max_tokens (int): Max tokens per chunk (default 127). :key overlap (int): Max tokens allowed to overlap between chunks (default 48). :key trim (int): Trim whitespace from chunks (default False). :return: Dict with ISCC processing results (using Index-Format for granular features) """ if not text: raise ValueError("Input text cannot be empty.") opts = sct.sct_opts.override(options) result = {"iscc": None} # Initialize first so `iscc` key is "first" in dict if opts.characters: result["characters"] = len(text) # Text splitting splits = split_text(text, **opts.model_dump()) offsets, chunks = [list(item) for item in zip(*splits)] # Chunk embedding with sct.timer("EMBEDDING time"): embeddings = embed_chunks(chunks) # Create global document embedding embedding = mean_pooling(embeddings) if any([opts.simprints, opts.offsets, opts.sizes, opts.contents, opts.embedding]): feature_set = { "maintype": "semantic", "subtype": "text", "version": 0, } if opts.embedding: feature_set["embedding"] = compress(embedding, opts.precision) if opts.simprints: feature_digests = [binarize(vec)[: opts.bits_granular // 8] for vec in embeddings] feature_set["simprints"] = [sct.encode_base64(digest) for digest in feature_digests] if opts.offsets: feature_set["offsets"] = offsets if opts.sizes: feature_set["sizes"] = [len(chunk) for chunk in chunks] if opts.contents: feature_set["contents"] = chunks result["features"] = [feature_set] # Encode global document embedding length = BIT_LEN_MAP[opts.bits] header = int(MAINTYPE + SUBTYPE + SCT_VERSION + length, 2).to_bytes(2, byteorder="big") digest = binarize(embedding)[: opts.bits // 8] code = sct.encode_base32(header + digest) result["iscc"] = "ISCC:" + code return result def soft_hash_text_semantic(text): # type: (str) -> bytes """Creates a 256-bit semantic similarity preserving hash for text input.""" chunks = [item[1] for item in split_text(text)] embeddings = embed_chunks(chunks) embedding = mean_pooling(embeddings) digest = binarize(embedding) return digest def split_text(text, **options): # type: (str) -> list[tuple[int,str]] """ Split text into semantically coherent chunks for embedding. :param text: Text to split. :param options: Custom processing options for overriding global options :key max_tokens (int): Max tokens per chunk (default 127). :key overlap (int): Max tokens allowed to overlap between chunks (default 48). :key trim (int): Trim whitespace from chunks (default False). :return: A list of offset, chunk tuples [(offset,chunk), ...] """ opts = sct.sct_opts.override(options) return splitter(**opts.model_dump()).chunk_indices(text) @cache def tokenizer(): # type: () -> Tokenizer """ Load and cache the tokenizer model based on the predefined model name. :return: An instance of the Tokenizer. """ with sct.timer("TOKENIZER load time"): return Tokenizer.from_file(TOKENIZER_PATH.as_posix()) @cache def splitter(**options): # type: (Any) -> TextSplitter """ Load and cache the text splitter, initialized with tokenizer. :param options: Custom processing options for overriding global options :key max_tokens (int): Max tokens per chunk (default 127). :key overlap (int): Max tokens allowed to overlap between chunks (default 48). :key trim (int): Trim whitespace from chunks (default False). :return: An instance of TextSplitter. """ opts = sct.sct_opts.override(options) with sct.timer("TEXTSPLITTER load time"): return TextSplitter.from_huggingface_tokenizer( tokenizer(), capacity=opts.max_tokens, overlap=opts.overlap, trim=opts.trim ) @cache def model(): # type: () -> rt.InferenceSession """ Load and cache the ONNX inference model from a specified path. :return: An ONNX inference session. """ available_onnx_providers = rt.get_available_providers() log.debug(f"Available ONNX providers {', '.join(available_onnx_providers)}") selected_onnx_providers = ["CPUExecutionProvider"] if "CUDAExecutionProvider" in available_onnx_providers: # pragma: no cover selected_onnx_providers.insert(0, "CUDAExecutionProvider") log.debug(f"Using ONNX providers {', '.join(selected_onnx_providers)}") so = rt.SessionOptions() so.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL try: with sct.timer("ONNXMODEL load time"): return rt.InferenceSession(sct.MODEL_PATH, sess_options=so, providers=selected_onnx_providers) except NoSuchFile: # pragma: no cover with sct.timer("ONNXMODEL aquisition/load time"): model_path = sct.get_model() return rt.InferenceSession(model_path, sess_options=so, providers=selected_onnx_providers) def tokenize_chunks(chunks): # type: (list[str]) -> dict """ Tokenize text chunks into model-compatible formats. :param chunks: Text chunks to tokenize. :return: Dictionary of tokenized data including input IDs, attention masks, and type IDs. """ encodings = tokenizer().encode_batch(chunks) input_ids = np.array([encoding.ids for encoding in encodings], dtype=np.int64) attention_mask = np.array([encoding.attention_mask for encoding in encodings], dtype=np.int64) type_ids = np.array([encoding.type_ids for encoding in encodings], dtype=np.int64) return {"input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": type_ids} def embed_chunks(chunks, batch_size=100): """ Embed text chunks and return vector embeddings. :param chunks: Text chunks to embed. :param batch_size: Number of chunks to process in each batch. :return: An array of embeddings for each chunk. """ embeddings = [] for start_idx in range(0, len(chunks), batch_size): batch_chunks = chunks[start_idx : start_idx + batch_size] tokens = tokenize_chunks(batch_chunks) token_embeddings = embed_tokens(tokens) batch_embeddings = attention_pooling(token_embeddings, tokens["attention_mask"]) embeddings.append(batch_embeddings) return np.vstack(embeddings) def embed_tokens(tokens): # type: (dict) -> NDArray """ Create embeddings from tokenized text chunks using the model. :param tokens: Tokenized text data. :return: An array of embeddings. """ result = model().run(None, tokens) return np.array(result[0]) def attention_pooling(token_embeddings, attention_mask): # type: (np.array, np.array) -> np.array """ Apply attention mask based mean pooling to the token embeddings. :param token_embeddings: Raw token embeddings from the model. :param attention_mask: Attention masks for the embeddings. :return: An array of pooled and normalized embeddings. """ input_mask_expanded = attention_mask[:, :, None].astype(np.float32) sum_embeddings = np.sum(token_embeddings * input_mask_expanded, axis=1) sum_mask = np.clip(np.sum(input_mask_expanded, axis=1), a_min=1e-9, a_max=None) mean_pooled = sum_embeddings / sum_mask norm = np.linalg.norm(mean_pooled, ord=2, axis=1, keepdims=True) result = mean_pooled / np.clip(norm, a_min=1e-9, a_max=None) return result.astype(np.float32) def mean_pooling(embeddings): # type: (NDArray[np.float32]) -> NDArray """ Calculate the document vector from chunk embeddings using mean pooling. :param embeddings: Chunk embeddings. :return: A normalized document vector. """ document_vector = embeddings.mean(axis=0) return document_vector / np.linalg.norm(document_vector) def binarize(vec): # type: (NDArray) -> bytes """ Binarize an embedding vector into a hash digest. :param vec: Vector to be binarized. :return: A bytes object representing the binary hash. """ return bytes((np.packbits(np.array(vec) >= 0))) def compress(vec, precision): # type: (NDArray, int) -> list[float] """ Round down vector values to specified precision to reduce storage requirements. :param vec: Embedding vector. :param precision: Max number of fractional decimal places. :return: Vector as native python list of rounded floats. """ rounded_array = np.around(vec, decimals=precision) compress_list = [round(x, precision) for x in rounded_array.tolist()] return compress_list