File size: 6,624 Bytes
b31f748 8c51bed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import pytest
import iscc_sct as sct
from iscc_sct import utils
from blake3 import blake3
def test_check_integrity(tmp_path):
# Create a temporary file with known content
file_path = tmp_path / "testfile.txt"
content = "This is a test file."
with open(file_path, "w") as f:
f.write(content)
# Generate a correct checksum and then alter it to simulate failure
hasher = blake3()
hasher.update(content.encode())
correct_checksum = hasher.hexdigest()
assert utils.check_integrity(file_path, correct_checksum) == file_path
wrong_checksum = correct_checksum + "wrong" # Deliberately incorrect checksum
# Test the function with the wrong checksum
with pytest.raises(RuntimeError) as exc_info:
utils.check_integrity(file_path, wrong_checksum)
# Check that the exception message contains expected text
assert "Failed integrity check" in str(exc_info.value)
def test_hamming_distance_identical():
a = b"abc"
b = b"abc"
assert utils.hamming_distance(a, b) == 0
def test_hamming_distance_different():
a = b"abc"
b = b"abd"
assert utils.hamming_distance(a, b) == 3
def test_hamming_distance_completely_different():
a = b"\x00"
b = b"\xff"
assert utils.hamming_distance(a, b) == 8
def test_hamming_distance_raises_value_error():
a = b"abc"
b = b"abcd"
with pytest.raises(ValueError):
utils.hamming_distance(a, b)
def test_encode_decode_base32():
original = b"Hello, World!"
encoded = utils.encode_base32(original)
assert isinstance(encoded, str)
assert encoded == "JBSWY3DPFQQFO33SNRSCC"
decoded = utils.decode_base32(encoded)
assert isinstance(decoded, bytes)
assert decoded == original
def test_encode_decode_base64():
original = b"Hello, World!"
encoded = utils.encode_base64(original)
assert isinstance(encoded, str)
assert encoded == "SGVsbG8sIFdvcmxkIQ"
decoded = utils.decode_base64(encoded)
assert isinstance(decoded, bytes)
assert decoded == original
def test_encode_decode_edge_cases():
# Test empty input
assert utils.encode_base32(b"") == ""
assert utils.decode_base32("") == b""
assert utils.encode_base64(b"") == ""
assert utils.decode_base64("") == b""
# Test input with padding
original = b"a"
assert utils.decode_base32(utils.encode_base32(original)) == original
assert utils.decode_base64(utils.encode_base64(original)) == original
def test_iscc_distance_different_lengths():
iscc1 = sct.create("Hello", bits=64).iscc
iscc2 = sct.create("Hello", bits=96).iscc
with pytest.raises(ValueError, match="The input ISCCs must have the same length"):
utils.iscc_distance(iscc1, iscc2)
def test_cosine_similarity_identical():
a = b"\x00\x00\x00\x00"
b = b"\x00\x00\x00\x00"
assert utils.cosine_similarity(a, b) == 100
def test_cosine_similarity_opposite():
a = b"\x00\x00\x00\x00"
b = b"\xff\xff\xff\xff"
assert utils.cosine_similarity(a, b) == -100
def test_cosine_similarity_half_similar():
a = b"\x00\x00\xff\xff"
b = b"\x00\x00\x00\x00"
assert utils.cosine_similarity(a, b) == 0
def test_cosine_similarity_quarter_similar():
a = b"\x00\xff\xff\xff"
b = b"\x00\x00\x00\x00"
assert utils.cosine_similarity(a, b) == -50
def test_cosine_similarity_three_quarter_similar():
a = b"\x00\x00\x00\xff"
b = b"\x00\x00\x00\x00"
assert utils.cosine_similarity(a, b) == 50
def test_cosine_similarity_different_lengths():
a = b"\x00\x00\x00"
b = b"\x00\x00\x00\x00"
with pytest.raises(ValueError, match="The lengths of the two bytes objects must be the same"):
utils.cosine_similarity(a, b)
def test_granular_similarity():
from iscc_sct.models import Metadata, FeatureSet, Feature
# Create two Metadata objects with some matching and non-matching simprints
metadata_a = Metadata(
iscc="ISCC:KACYPXW563EDNM",
features=[
FeatureSet(
simprints=[
Feature(simprint="AAECAwQFBgc"), # Will match
Feature(simprint="CAkKCwwNDg8"), # Will not match
]
)
],
)
metadata_b = Metadata(
iscc="ISCC:KACYPXW563EDNM",
features=[
FeatureSet(
simprints=[
Feature(simprint="AAECAwQFBgc"), # Will match
Feature(simprint="EBESExQVFhc"), # Will not match
]
)
],
)
# Test with default threshold
matches = utils.granular_similarity(metadata_a, metadata_b)
assert len(matches) == 1
assert matches[0][0].simprint == "AAECAwQFBgc"
assert matches[0][1] == 100
assert matches[0][2].simprint == "AAECAwQFBgc"
# Test with lower threshold
matches = utils.granular_similarity(metadata_a, metadata_b, threshold=0)
assert len(matches) == 2 # All combinations should match
# Test with higher threshold
matches = utils.granular_similarity(metadata_a, metadata_b, threshold=101)
assert len(matches) == 0 # No matches should be found
def test_granular_similarity_no_matches():
from iscc_sct.models import Metadata, FeatureSet, Feature
metadata_a = Metadata(
iscc="ISCC:KACYPXW563EDNM",
features=[FeatureSet(simprints=[Feature(simprint="AAECAwQFBgc")])],
)
metadata_b = Metadata(
iscc="ISCC:KACYPXW563EDNM",
features=[FeatureSet(simprints=[Feature(simprint="CAkKCwwNDg8")])],
)
matches = utils.granular_similarity(metadata_a, metadata_b)
assert len(matches) == 0
def test_granular_similarity_multiple_matches():
from iscc_sct.models import Metadata, FeatureSet, Feature
metadata_a = Metadata(
iscc="ISCC:KACYPXW563EDNM",
features=[
FeatureSet(
simprints=[Feature(simprint="AAECAwQFBgc"), Feature(simprint="CAkKCwwNDg8")]
),
FeatureSet(simprints=[Feature(simprint="EBESExQVFhc")]),
],
)
metadata_b = Metadata(
iscc="ISCC:KACYPXW563EDNM",
features=[
FeatureSet(
simprints=[Feature(simprint="AAECAwQFBgc"), Feature(simprint="GBkaGxwdHh8")]
),
FeatureSet(simprints=[Feature(simprint="EBESExQVFhc")]),
],
)
matches = utils.granular_similarity(metadata_a, metadata_b)
assert len(matches) == 2
assert {(match[0].simprint, match[2].simprint) for match in matches} == {
("AAECAwQFBgc", "AAECAwQFBgc"),
("EBESExQVFhc", "EBESExQVFhc"),
}
|