File size: 12,516 Bytes
b31f748 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
# -*- coding: utf-8 -*-
"""*A cross-lingual semantic similarity preserving hash for plain-text content (soft hash).*
The ISCC Text-Code Semantic is a content-based compact binary code generated from multilingual text.
!!! Warning
This is a non-standard Proof of Concept implementation.
Plain-text extraction from documents in various formats (especially PDF) may
yield different results depending on the extraction tools being used.
The [iscc-sdk](https://github.com/iscc/iscc-sdk) uses [Apache Tika](https://tika.apache.org)
to extract text from documents for Text-Code generation.
**Algorithm overview**
- Split text into semantically coherent overlapping chunks.
- Create vector embeddings of the chunks.
- Average and binarize the chunk embeddings.
- Encode as ISCC-UNIT of MainType SEMANTIC and SubType TEXT
"""
from loguru import logger as log
from onnxruntime.capi.onnxruntime_pybind11_state import NoSuchFile
from semantic_text_splitter import TextSplitter
from tokenizers import Tokenizer
from pathlib import Path
from typing import Any
import numpy as np
import onnxruntime as rt
from numpy.typing import NDArray
from functools import cache
import iscc_sct as sct
HERE = Path(__file__).parent.absolute()
__all__ = [
"code_text_semantic",
"gen_text_code_semantic",
"soft_hash_text_semantic",
"embed_chunks",
]
BIT_LEN_MAP = {
32: "0000",
64: "0001",
96: "0010",
128: "0011",
160: "0100",
192: "0101",
224: "0110",
256: "0111",
}
TOKENIZER_PATH = HERE / "tokenizer.json"
MAINTYPE = "0001" # SEMANTIC
SUBTYPE = "0000" # TEXT
SCT_VERSION = "0000" # V0
def code_text_semantic(fp, **options):
# type: (Path|str, Any) -> dict[str, Any]
"""
Generate ISCC Semantic-Code Text from a text file.
NOTE:
If you enable generating granular features with `features=True` those features will have
the same bit-length as the generated ISCC-UNIT.
:param fp: File path of plaintext file to process
:param options: Custom processing options for overriding global options
:key bits (int): Length of generated Semantic Text-Code in bits (default 64)
:key characters (bool): Return document character count (default True).
:key embedding (bool): Return global document embedding (default False).
:key precision (int): Max fractional digits for embeddings (default 8).
:key features (bool): Return granular document features (default False).
:key offsets (bool): Return character offsets for granular features (default False).
:key chunks (bool): Return text chunks (default False).
:key max_tokens (int): Max tokens per chunk (default 127).
:key overlap (int): Max tokens allowed to overlap between chunks (default 48).
:key trim (int): Trim whitespace from chunks (default False).
:return: Dict with ISCC processing results
"""
fp = Path(fp)
return gen_text_code_semantic(fp.read_text(encoding="utf-8"), **options)
def gen_text_code_semantic(text, **options):
# type: (str, Any) -> dict
"""
Create an ISCC Semantic-Code Text from plaintext.
:param str text: Plaint text for ISCC processing
:param options: Custom processing options for overriding global options
:key bits (int): Length of generated Semantic Text-Code in bits (default 64)
:key characters (bool): Return document character count (default True).
:key embedding (bool): Return global document embedding (default False).
:key precision (int): Max fractional digits for embeddings (default 8).
:key features (bool): Return granular document features (default False).
:key offsets (bool): Return character offsets for granular features (default False).
:key chunks (bool): Return text chunks (default False).
:key max_tokens (int): Max tokens per chunk (default 127).
:key overlap (int): Max tokens allowed to overlap between chunks (default 48).
:key trim (int): Trim whitespace from chunks (default False).
:return: Dict with ISCC processing results (using Index-Format for granular features)
"""
if not text:
raise ValueError("Input text cannot be empty.")
opts = sct.sct_opts.override(options)
result = {"iscc": None} # Initialize first so `iscc` key is "first" in dict
if opts.characters:
result["characters"] = len(text)
# Text splitting
splits = split_text(text, **opts.model_dump())
offsets, chunks = [list(item) for item in zip(*splits)]
# Chunk embedding
with sct.timer("EMBEDDING time"):
embeddings = embed_chunks(chunks)
# Create global document embedding
embedding = mean_pooling(embeddings)
if any([opts.simprints, opts.offsets, opts.sizes, opts.contents, opts.embedding]):
feature_set = {
"maintype": "semantic",
"subtype": "text",
"version": 0,
}
if opts.embedding:
feature_set["embedding"] = compress(embedding, opts.precision)
if opts.simprints:
feature_digests = [binarize(vec)[: opts.bits_granular // 8] for vec in embeddings]
feature_set["simprints"] = [sct.encode_base64(digest) for digest in feature_digests]
if opts.offsets:
feature_set["offsets"] = offsets
if opts.sizes:
feature_set["sizes"] = [len(chunk) for chunk in chunks]
if opts.contents:
feature_set["contents"] = chunks
result["features"] = [feature_set]
# Encode global document embedding
length = BIT_LEN_MAP[opts.bits]
header = int(MAINTYPE + SUBTYPE + SCT_VERSION + length, 2).to_bytes(2, byteorder="big")
digest = binarize(embedding)[: opts.bits // 8]
code = sct.encode_base32(header + digest)
result["iscc"] = "ISCC:" + code
return result
def soft_hash_text_semantic(text):
# type: (str) -> bytes
"""Creates a 256-bit semantic similarity preserving hash for text input."""
chunks = [item[1] for item in split_text(text)]
embeddings = embed_chunks(chunks)
embedding = mean_pooling(embeddings)
digest = binarize(embedding)
return digest
def split_text(text, **options):
# type: (str) -> list[tuple[int,str]]
"""
Split text into semantically coherent chunks for embedding.
:param text: Text to split.
:param options: Custom processing options for overriding global options
:key max_tokens (int): Max tokens per chunk (default 127).
:key overlap (int): Max tokens allowed to overlap between chunks (default 48).
:key trim (int): Trim whitespace from chunks (default False).
:return: A list of offset, chunk tuples [(offset,chunk), ...]
"""
opts = sct.sct_opts.override(options)
return splitter(**opts.model_dump()).chunk_indices(text)
@cache
def tokenizer():
# type: () -> Tokenizer
"""
Load and cache the tokenizer model based on the predefined model name.
:return: An instance of the Tokenizer.
"""
with sct.timer("TOKENIZER load time"):
return Tokenizer.from_file(TOKENIZER_PATH.as_posix())
@cache
def splitter(**options):
# type: (Any) -> TextSplitter
"""
Load and cache the text splitter, initialized with tokenizer.
:param options: Custom processing options for overriding global options
:key max_tokens (int): Max tokens per chunk (default 127).
:key overlap (int): Max tokens allowed to overlap between chunks (default 48).
:key trim (int): Trim whitespace from chunks (default False).
:return: An instance of TextSplitter.
"""
opts = sct.sct_opts.override(options)
with sct.timer("TEXTSPLITTER load time"):
return TextSplitter.from_huggingface_tokenizer(
tokenizer(), capacity=opts.max_tokens, overlap=opts.overlap, trim=opts.trim
)
@cache
def model():
# type: () -> rt.InferenceSession
"""
Load and cache the ONNX inference model from a specified path.
:return: An ONNX inference session.
"""
available_onnx_providers = rt.get_available_providers()
log.debug(f"Available ONNX providers {', '.join(available_onnx_providers)}")
selected_onnx_providers = ["CPUExecutionProvider"]
if "CUDAExecutionProvider" in available_onnx_providers: # pragma: no cover
selected_onnx_providers.insert(0, "CUDAExecutionProvider")
log.debug(f"Using ONNX providers {', '.join(selected_onnx_providers)}")
so = rt.SessionOptions()
so.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
try:
with sct.timer("ONNXMODEL load time"):
return rt.InferenceSession(sct.MODEL_PATH, sess_options=so, providers=selected_onnx_providers)
except NoSuchFile: # pragma: no cover
with sct.timer("ONNXMODEL aquisition/load time"):
model_path = sct.get_model()
return rt.InferenceSession(model_path, sess_options=so, providers=selected_onnx_providers)
def tokenize_chunks(chunks):
# type: (list[str]) -> dict
"""
Tokenize text chunks into model-compatible formats.
:param chunks: Text chunks to tokenize.
:return: Dictionary of tokenized data including input IDs, attention masks, and type IDs.
"""
encodings = tokenizer().encode_batch(chunks)
input_ids = np.array([encoding.ids for encoding in encodings], dtype=np.int64)
attention_mask = np.array([encoding.attention_mask for encoding in encodings], dtype=np.int64)
type_ids = np.array([encoding.type_ids for encoding in encodings], dtype=np.int64)
return {"input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": type_ids}
def embed_chunks(chunks, batch_size=100):
"""
Embed text chunks and return vector embeddings.
:param chunks: Text chunks to embed.
:param batch_size: Number of chunks to process in each batch.
:return: An array of embeddings for each chunk.
"""
embeddings = []
for start_idx in range(0, len(chunks), batch_size):
batch_chunks = chunks[start_idx : start_idx + batch_size]
tokens = tokenize_chunks(batch_chunks)
token_embeddings = embed_tokens(tokens)
batch_embeddings = attention_pooling(token_embeddings, tokens["attention_mask"])
embeddings.append(batch_embeddings)
return np.vstack(embeddings)
def embed_tokens(tokens):
# type: (dict) -> NDArray
"""
Create embeddings from tokenized text chunks using the model.
:param tokens: Tokenized text data.
:return: An array of embeddings.
"""
result = model().run(None, tokens)
return np.array(result[0])
def attention_pooling(token_embeddings, attention_mask):
# type: (np.array, np.array) -> np.array
"""
Apply attention mask based mean pooling to the token embeddings.
:param token_embeddings: Raw token embeddings from the model.
:param attention_mask: Attention masks for the embeddings.
:return: An array of pooled and normalized embeddings.
"""
input_mask_expanded = attention_mask[:, :, None].astype(np.float32)
sum_embeddings = np.sum(token_embeddings * input_mask_expanded, axis=1)
sum_mask = np.clip(np.sum(input_mask_expanded, axis=1), a_min=1e-9, a_max=None)
mean_pooled = sum_embeddings / sum_mask
norm = np.linalg.norm(mean_pooled, ord=2, axis=1, keepdims=True)
result = mean_pooled / np.clip(norm, a_min=1e-9, a_max=None)
return result.astype(np.float32)
def mean_pooling(embeddings):
# type: (NDArray[np.float32]) -> NDArray
"""
Calculate the document vector from chunk embeddings using mean pooling.
:param embeddings: Chunk embeddings.
:return: A normalized document vector.
"""
document_vector = embeddings.mean(axis=0)
return document_vector / np.linalg.norm(document_vector)
def binarize(vec):
# type: (NDArray) -> bytes
"""
Binarize an embedding vector into a hash digest.
:param vec: Vector to be binarized.
:return: A bytes object representing the binary hash.
"""
return bytes((np.packbits(np.array(vec) >= 0)))
def compress(vec, precision):
# type: (NDArray, int) -> list[float]
"""
Round down vector values to specified precision to reduce storage requirements.
:param vec: Embedding vector.
:param precision: Max number of fractional decimal places.
:return: Vector as native python list of rounded floats.
"""
rounded_array = np.around(vec, decimals=precision)
compress_list = [round(x, precision) for x in rounded_array.tolist()]
return compress_list
|