alcm / wav_evaluation /models /CLAPWrapper.py
inLine-XJY's picture
Upload 335 files
2b5b9ef verified
raw
history blame
12 kB
import random
import torchaudio
from six import string_types as string_classes
import collections
import re
import torch.nn.functional as F
import numpy as np
from transformers import AutoTokenizer
from wav_evaluation.models.utils import read_config_as_args
from wav_evaluation.models.clap import CLAP
import math
import torchaudio.transforms as T
import os
import torch
from importlib_resources import files
class CLAPWrapper():
"""
A class for interfacing CLAP model.
"""
def __init__(self, model_fp,config_path, use_cuda=False):
self.np_str_obj_array_pattern = re.compile(r'[SaUO]')
self.file_path = os.path.realpath(__file__)
self.default_collate_err_msg_format = (
"default_collate: batch must contain tensors, numpy arrays, numbers, "
"dicts or lists; found {}")
with open(config_path,'r') as f:
self.config_as_str = f.read()
self.model_fp = model_fp
self.use_cuda = use_cuda
self.clap, self.tokenizer, self.args = self.load_clap()
def load_clap(self):
r"""Load CLAP model with args from config file"""
args = read_config_as_args(self.config_as_str, is_config_str=True)
if 'bert' in args.text_model:
self.token_keys = ['input_ids', 'token_type_ids', 'attention_mask']
else:
self.token_keys = ['input_ids', 'attention_mask']
clap = CLAP(
audioenc_name=args.audioenc_name,
sample_rate=args.sampling_rate,
window_size=args.window_size,
hop_size=args.hop_size,
mel_bins=args.mel_bins,
fmin=args.fmin,
fmax=args.fmax,
classes_num=args.num_classes,
out_emb=args.out_emb,
text_model=args.text_model,
transformer_embed_dim=args.transformer_embed_dim,
d_proj=args.d_proj
)
# Load pretrained weights for model
model_state_dict = torch.load(self.model_fp, map_location=torch.device('cpu'))['model']
clap.load_state_dict(model_state_dict, strict=False)
clap.eval() # set clap in eval mode
tokenizer = AutoTokenizer.from_pretrained(args.text_model)
if self.use_cuda and torch.cuda.is_available():
clap = clap.cuda()
return clap, tokenizer, args
def default_collate(self, batch):
r"""Puts each data field into a tensor with outer dimension batch size"""
elem = batch[0]
elem_type = type(elem)
if isinstance(elem, torch.Tensor):
out = None
if torch.utils.data.get_worker_info() is not None:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = elem.storage()._new_shared(numel)
out = elem.new(storage)
return torch.stack(batch, 0, out=out)
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap':
# array of string classes and object
if self.np_str_obj_array_pattern.search(elem.dtype.str) is not None:
raise TypeError(
self.default_collate_err_msg_format.format(elem.dtype))
return self.default_collate([torch.as_tensor(b) for b in batch])
elif elem.shape == (): # scalars
return torch.as_tensor(batch)
elif isinstance(elem, float):
return torch.tensor(batch, dtype=torch.float64)
elif isinstance(elem, int):
return torch.tensor(batch)
elif isinstance(elem, string_classes):
return batch
elif isinstance(elem, collections.abc.Mapping):
return {key: self.default_collate([d[key] for d in batch]) for key in elem}
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
return elem_type(*(self.default_collate(samples) for samples in zip(*batch)))
elif isinstance(elem, collections.abc.Sequence):
# check to make sure that the elements in batch have consistent size
it = iter(batch)
elem_size = len(next(it))
if not all(len(elem) == elem_size for elem in it):
raise RuntimeError(
'each element in list of batch should be of equal size')
transposed = zip(*batch)
return [self.default_collate(samples) for samples in transposed]
raise TypeError(self.default_collate_err_msg_format.format(elem_type))
def load_audio_into_tensor(self, audio_path, audio_duration, resample=False):
r"""Loads audio file and returns raw audio."""
# Randomly sample a segment of audio_duration from the clip or pad to match duration
audio_time_series, sample_rate = torchaudio.load(audio_path)
resample_rate = self.args.sampling_rate
if resample:
resampler = T.Resample(sample_rate, resample_rate)
audio_time_series = resampler(audio_time_series)
audio_time_series = audio_time_series.reshape(-1)
# audio_time_series is shorter than predefined audio duration,
# so audio_time_series is extended
if audio_duration*sample_rate >= audio_time_series.shape[0]:
repeat_factor = int(np.ceil((audio_duration*sample_rate) /
audio_time_series.shape[0]))
# Repeat audio_time_series by repeat_factor to match audio_duration
audio_time_series = audio_time_series.repeat(repeat_factor)
# remove excess part of audio_time_series
audio_time_series = audio_time_series[0:audio_duration*sample_rate]
else:
# audio_time_series is longer than predefined audio duration,
# so audio_time_series is trimmed
start_index = random.randrange(
audio_time_series.shape[0] - audio_duration*sample_rate)
audio_time_series = audio_time_series[start_index:start_index +
audio_duration*sample_rate]
return torch.FloatTensor(audio_time_series)
def preprocess_audio(self, audio_files, resample):
r"""Load list of audio files and return raw audio"""
audio_tensors = []
for audio_file in audio_files:
audio_tensor = self.load_audio_into_tensor(
audio_file, self.args.duration, resample)
audio_tensor = audio_tensor.reshape(
1, -1).cuda() if self.use_cuda and torch.cuda.is_available() else audio_tensor.reshape(1, -1)
audio_tensors.append(audio_tensor)
return self.default_collate(audio_tensors)
def preprocess_text(self, text_queries):
r"""Load list of class labels and return tokenized text"""
tokenized_texts = []
for ttext in text_queries:
tok = self.tokenizer.encode_plus(
text=ttext, add_special_tokens=True, max_length=self.args.text_len, padding="max_length", return_tensors="pt") # max_length=self.args.text_len, padding=True,
for key in self.token_keys:
tok[key] = tok[key].reshape(-1).cuda() if self.use_cuda and torch.cuda.is_available() else tok[key].reshape(-1)
tokenized_texts.append(tok)
return self.default_collate(tokenized_texts)
def get_text_embeddings(self, class_labels):
r"""Load list of class labels and return text embeddings"""
preprocessed_text = self.preprocess_text(class_labels)
text_embeddings = self._get_text_embeddings(preprocessed_text)
text_embeddings = text_embeddings/torch.norm(text_embeddings, dim=-1, keepdim=True)
return text_embeddings
def get_audio_embeddings(self, audio_files, resample):
r"""Load list of audio files and return a audio embeddings"""
preprocessed_audio = self.preprocess_audio(audio_files, resample)
audio_embeddings = self._get_audio_embeddings(preprocessed_audio)
audio_embeddings = audio_embeddings/torch.norm(audio_embeddings, dim=-1, keepdim=True)
return audio_embeddings
def _get_text_embeddings(self, preprocessed_text):
r"""Load preprocessed text and return text embeddings"""
with torch.no_grad():
text_embeddings = self.clap.caption_encoder(preprocessed_text)
text_embeddings = text_embeddings/torch.norm(text_embeddings, dim=-1, keepdim=True)
return text_embeddings
def _get_audio_embeddings(self, preprocessed_audio):
r"""Load preprocessed audio and return a audio embeddings"""
with torch.no_grad():
preprocessed_audio = preprocessed_audio.reshape(
preprocessed_audio.shape[0], preprocessed_audio.shape[2])
#Append [0] the audio emebdding, [1] has output class probabilities
audio_embeddings = self.clap.audio_encoder(preprocessed_audio)[0]
audio_embeddings = audio_embeddings/torch.norm(audio_embeddings, dim=-1, keepdim=True)
return audio_embeddings
def compute_similarity(self, audio_embeddings, text_embeddings,use_logit_scale = True):
r"""Compute similarity between text and audio embeddings"""
if use_logit_scale:
logit_scale = self.clap.logit_scale.exp()
similarity = logit_scale*text_embeddings @ audio_embeddings.T
else:
similarity = text_embeddings @ audio_embeddings.T
return similarity.T
def cal_clap_score(self,txt,audio_path):
text_embeddings = self.get_text_embeddings([txt])# 经过了norm的embedding
audio_embeddings = self.get_audio_embeddings([audio_path], resample=True)# 这一步比较耗时,读取音频并重采样到44100
score = self.compute_similarity(audio_embeddings, text_embeddings,use_logit_scale=False).squeeze().cpu().numpy()
return score
def _generic_batch_inference(self, func, *args):
r"""Process audio and/or text per batch"""
input_tmp = args[0]
batch_size = args[-1]
# args[0] has audio_files, args[1] has class_labels
inputs = [args[0], args[1]] if len(args) == 3 else [args[0]]
args0_len = len(args[0])
# compute text_embeddings once for all the audio_files batches
if len(inputs) == 2:
text_embeddings = self.get_text_embeddings(args[1])
inputs = [args[0], args[1], text_embeddings]
dataset_idx = 0
for _ in range(math.ceil(args0_len/batch_size)):
next_batch_idx = dataset_idx + batch_size
# batch size is bigger than available audio/text items
if next_batch_idx >= args0_len:
inputs[0] = input_tmp[dataset_idx:]
return func(*tuple(inputs))
else:
inputs[0] = input_tmp[dataset_idx:next_batch_idx]
yield func(*tuple(inputs))
dataset_idx = next_batch_idx
def get_audio_embeddings_per_batch(self, audio_files, batch_size):
r"""Load preprocessed audio and return a audio embeddings per batch"""
return self._generic_batch_inference(self.get_audio_embeddings, audio_files, batch_size)
def get_text_embeddings_per_batch(self, class_labels, batch_size):
r"""Load preprocessed text and return text embeddings per batch"""
return self._generic_batch_inference(self.get_text_embeddings, class_labels, batch_size)
def classify_audio_files_per_batch(self, audio_files, class_labels, batch_size):
r"""Compute classification probabilities for each audio recording in a batch and each class label"""
return self._generic_batch_inference(self.classify_audio_files, audio_files, class_labels, batch_size)