File size: 6,200 Bytes
2b5b9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import argparse, os, sys, glob
import pathlib
directory = pathlib.Path(os.getcwd())
print(directory)
sys.path.append(str(directory))
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
import pandas as pd
from torch.utils.data import DataLoader 
from tqdm import tqdm
from icecream import ic
from pathlib import Path
import yaml
from vocoder.bigvgan.models import VocoderBigVGAN
import soundfile
# from pytorch_memlab import LineProfiler,profile

def load_model_from_config(config, ckpt = None, verbose=True):
    model = instantiate_from_config(config.model)
    if ckpt:
        print(f"Loading model from {ckpt}")
        pl_sd = torch.load(ckpt, map_location="cpu")
        sd = pl_sd["state_dict"]
        
        m, u = model.load_state_dict(sd, strict=False)
        if len(m) > 0 and verbose:
            print("missing keys:")
            print(m)
        if len(u) > 0 and verbose:
            print("unexpected keys:")
            print(u)
    else:
        print(f"Note chat no ckpt is loaded !!!")

    model.cuda()
    model.eval()
    return model


def parse_args():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--sample_rate",
        type=int,
        default="16000",
        help="sample rate of wav"
    )

    parser.add_argument(
        "--test-dataset",
        default="none",
        help="test which dataset: audiocaps/clotho/fsd50k"
    )
    parser.add_argument(
        "--outdir",
        type=str,
        nargs="?",
        help="dir to write results to",
        default="outputs/txt2audio-samples"
    )



    parser.add_argument(
        "-r",
        "--resume",
        type=str,
        const=True,
        default="",
        nargs="?",
        help="resume from logdir or checkpoint in logdir",
    )
    parser.add_argument(
        "-b",
        "--base",
        type=str,
        help="paths to base configs. Loaded from left-to-right. "
             "Parameters can be overwritten or added with command-line options of the form `--key value`.",
        default="",
    )
    parser.add_argument(
        "--vocoder-ckpt",
        type=str,
        help="paths to vocoder checkpoint",
        default='vocoder/logs/bigvnat16k93.5w',
    )

    return parser.parse_args()

class GenSamples:
    def __init__(self,opt,model,outpath,vocoder = None,save_mel = False,save_wav = True) -> None:
        self.opt = opt
        self.model = model
        self.outpath = outpath
        if save_wav:
            assert vocoder is not None
            self.vocoder = vocoder
        self.save_mel = save_mel
        self.save_wav = save_wav
    
    def gen_test_sample(self,mel,mel_name = None,wav_name = None):# prompt is {'ori_caption':’xxx‘,'struct_caption':'xxx'}
        uc = None
        record_dicts = []
        # if os.path.exists(os.path.join(self.outpath,mel_name+f'_0.npy')):
        #     return record_dicts
        # import ipdb
        # ipdb.set_trace()
        recon_mel,posterior = self.model(mel)
        spec = recon_mel.squeeze(0).cpu().numpy()

            
        if self.save_wav:
            wav = self.vocoder.vocode(spec)
            wav_path = os.path.join(self.outpath,wav_name+'.wav')
            soundfile.write(wav_path, wav, self.opt.sample_rate)
        return

def main():
    opt = parse_args()

    config = OmegaConf.load(opt.base)
    # print("-------quick debug no load ckpt---------")
    # model = instantiate_from_config(config['model'])# for quick debug
    model = load_model_from_config(config, opt.resume)

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = model.to(device)


    os.makedirs(opt.outdir, exist_ok=True)
    if 'mel' in opt.vocoder_ckpt:
        vocoder = VocoderMelGan(opt.vocoder_ckpt,device)
    elif 'hifi' in opt.vocoder_ckpt:
        vocoder = VocoderHifigan(opt.vocoder_ckpt,device)
    elif 'bigv' in opt.vocoder_ckpt:
        vocoder = VocoderBigVGAN(opt.vocoder_ckpt,device)


    generator = GenSamples(opt,model,opt.outdir,vocoder,save_mel = False,save_wav = True)
    csv_dicts = []
    
    with torch.no_grad():
        if opt.test_dataset != 'none':
            if opt.test_dataset == 'audiocaps':
                test_dataset = instantiate_from_config(config['test_dataset'])
            elif opt.test_dataset == 'clotho':
                test_dataset = instantiate_from_config(config['test_dataset2'])
            elif opt.test_dataset == 'fsd50k':
                test_dataset = instantiate_from_config(config['test_dataset3'])
            elif opt.test_dataset == 'musiccap':
                test_dataset = instantiate_from_config(config['test_dataset'])
            print(f"Dataset: {type(test_dataset)} LEN: {len(test_dataset)}")
            for item in tqdm(test_dataset):
                mel,f_name = item['image'],item['f_name']
                mel = torch.from_numpy(mel).to(device).unsqueeze(0)
                vname_num_split_index = f_name.rfind('_')# file_names[b]:video_name+'_'+num
                v_n,num = f_name[:vname_num_split_index],f_name[vname_num_split_index+1:]
                mel_name = f'{v_n}_sample_{num}'
                wav_name = f'{v_n}_sample_{num}'
                generator.gen_test_sample(mel,mel_name=mel_name,wav_name=wav_name)
                # write_gt_wav(v_n,opt.test_dataset2,opt.outdir,opt.sample_rate)
                # csv_dicts.extend(generator.gen_test_sample(mel,mel_name=mel_name,wav_name=wav_name))

            # df = pd.DataFrame.from_dict(csv_dicts)
            # df.to_csv(os.path.join(opt.outdir,'result.csv'),sep='\t',index=False)
        else:
            with open(opt.prompt_txt,'r') as f:
                prompts = f.readlines()
            for prompt in prompts:
                wav_name = f'{prompt.strip().replace(" ", "-")}'
                generator.gen_test_sample(prompt,wav_name=wav_name)

    print(f"Your samples are ready and waiting four you here: \n{opt.outdir} \nEnjoy.")

if __name__ == "__main__":
    main()