|
import gradio as gr |
|
import torch |
|
import random |
|
import transformers |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
print("Using GPU") |
|
else: |
|
device = "cpu" |
|
print("Using CPU") |
|
|
|
tokenizer = T5Tokenizer.from_pretrained("imranali291/flux-prompt-enhancer") |
|
model = T5ForConditionalGeneration.from_pretrained("imranali291/flux-prompt-enhancer", device_map="auto", torch_dtype="auto") |
|
model.to(device) |
|
|
|
def generate(your_prompt, max_new_tokens, repetition_penalty, temperature, model_precision_type, top_p, top_k, seed): |
|
|
|
if seed == 0: |
|
seed = random.randint(1, 2**32-1) |
|
transformers.set_seed(seed) |
|
|
|
if model_precision_type == "fp16": |
|
dtype = torch.float16 |
|
elif model_precision_type == "fp32": |
|
dtype = torch.float32 |
|
|
|
model.to(dtype) |
|
|
|
repetition_penalty = float(repetition_penalty) |
|
|
|
input_text = f"{your_prompt}" |
|
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=max_new_tokens, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
) |
|
|
|
better_prompt = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return better_prompt |
|
|
|
|
|
your_prompt = gr.Textbox(label="Your Prompt", info="Your Prompt that you want to enhanced") |
|
|
|
max_new_tokens = gr.Slider(value=128, minimum=25, maximum=512, step=1, label="Max New Tokens", info="The maximum numbers of new tokens, controls how long is the output") |
|
|
|
repetition_penalty = gr.Slider(value=2.5, minimum=0, maximum=3.0, step=0.05, label="Repetition Penalty", info="Penalize repeated tokens, making the AI repeat less itself") |
|
|
|
temperature = gr.Slider(value=0.7, minimum=0, maximum=1, step=0.05, label="Temperature", info="Higher values produce more diverse outputs") |
|
|
|
model_precision_type = gr.Dropdown(["fp16", "fp32"], value="fp16", label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which is more precise but more resource consuming") |
|
|
|
top_p = gr.Slider(value=0.9, minimum=0, maximum=2, step=0.05, label="Top P", info="Higher values sample more low-probability tokens") |
|
|
|
top_k = gr.Slider(value=50, minimum=1, maximum=100, step=1, label="Top K", info="Higher k means more diverse outputs by considering a range of tokens") |
|
|
|
seed = gr.Slider(value=42, minimum=0, maximum=2**32-1, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one") |
|
|
|
examples = [ |
|
["Futuristic cityscape at twilight descent.", 128, 2.5, 0.5, "fp16", 0.9, 50, 42] |
|
] |
|
|
|
gr.Interface( |
|
fn=generate, |
|
inputs=[your_prompt, max_new_tokens, repetition_penalty, temperature, model_precision_type, top_p, top_k, seed], |
|
outputs=gr.Textbox(label="Prompt Enhancer"), |
|
title="Prompt Enhancer", |
|
description='Make your prompts more detailed!', |
|
examples=examples, |
|
).launch(share=True) |