Spaces:
Running
Running
ikechan8370
commited on
Commit
·
0abb626
1
Parent(s):
f617159
Add application file
Browse files- .idea/.gitignore +8 -0
- Dockerfile +11 -0
- README.md +30 -11
- main.py +177 -0
- requirements.txt +6 -0
.idea/.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
4 |
+
# Editor-based HTTP Client requests
|
5 |
+
/httpRequests/
|
6 |
+
# Datasource local storage ignored files
|
7 |
+
/dataSources/
|
8 |
+
/dataSources.local.xml
|
Dockerfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
8 |
+
|
9 |
+
COPY . .
|
10 |
+
|
11 |
+
CMD python main.py
|
README.md
CHANGED
@@ -1,11 +1,30 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# chatgpt-plugin-extras
|
2 |
+
|
3 |
+
chatgpt-plugin一些花活额外工具
|
4 |
+
|
5 |
+
## 安装
|
6 |
+
|
7 |
+
`pip install -r requirements.txt`
|
8 |
+
|
9 |
+
`mkdir -p data/upload`
|
10 |
+
|
11 |
+
`python main.py`
|
12 |
+
|
13 |
+
运行在5000端口。目前默认使用CPU
|
14 |
+
|
15 |
+
## 使用
|
16 |
+
|
17 |
+
### ImageCaption
|
18 |
+
|
19 |
+
POST http://127.0.0.1:5000/image-captioning
|
20 |
+
|
21 |
+
Form-Data \
|
22 |
+
file: 图片文件
|
23 |
+
|
24 |
+
### Visual QA
|
25 |
+
|
26 |
+
POST http://127.0.0.1:5000/visual-qa
|
27 |
+
|
28 |
+
Form-Data \
|
29 |
+
file: 图片文件 \
|
30 |
+
q: 问题
|
main.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from uuid import uuid4
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
from controlnet_aux import HEDdetector
|
7 |
+
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
8 |
+
from flask import Flask, request, send_file
|
9 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
|
10 |
+
from transformers import pipeline
|
11 |
+
|
12 |
+
app = Flask('chatgpt-plugin-extras')
|
13 |
+
|
14 |
+
|
15 |
+
class VitGPT2:
|
16 |
+
def __init__(self, device):
|
17 |
+
print(f"Initializing VitGPT2 ImageCaptioning to {device}")
|
18 |
+
self.pipeline = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
19 |
+
|
20 |
+
def inference(self, image_path):
|
21 |
+
captions = self.pipeline(image_path)[0]['generated_text']
|
22 |
+
print(f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}")
|
23 |
+
return captions
|
24 |
+
|
25 |
+
|
26 |
+
class ImageCaptioning:
|
27 |
+
def __init__(self, device):
|
28 |
+
print(f"Initializing ImageCaptioning to {device}")
|
29 |
+
self.device = device
|
30 |
+
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
31 |
+
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
32 |
+
self.model = BlipForConditionalGeneration.from_pretrained(
|
33 |
+
"Salesforce/blip-image-captioning-large", torch_dtype=self.torch_dtype).to(self.device)
|
34 |
+
|
35 |
+
def inference(self, image_path):
|
36 |
+
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device, self.torch_dtype)
|
37 |
+
out = self.model.generate(**inputs)
|
38 |
+
captions = self.processor.decode(out[0], skip_special_tokens=True)
|
39 |
+
print(f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}")
|
40 |
+
return captions
|
41 |
+
|
42 |
+
|
43 |
+
class VQA:
|
44 |
+
def __init__(self, device):
|
45 |
+
print(f"Initializing Visual QA to {device}")
|
46 |
+
self.device = device
|
47 |
+
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
48 |
+
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
49 |
+
self.model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base",
|
50 |
+
torch_dtype=self.torch_dtype).to(self.device)
|
51 |
+
|
52 |
+
def inference(self, image_path, question):
|
53 |
+
inputs = self.processor(Image.open(image_path), question, return_tensors="pt").to(self.device, self.torch_dtype)
|
54 |
+
out = self.model.generate(**inputs)
|
55 |
+
answers = self.processor.decode(out[0], skip_special_tokens=True)
|
56 |
+
print(f"\nProcessed Visual QA, Input Image: {image_path}, Output Text: {answers}")
|
57 |
+
return answers
|
58 |
+
|
59 |
+
|
60 |
+
class Image2Hed:
|
61 |
+
def __init__(self, device):
|
62 |
+
print("Initializing Image2Hed")
|
63 |
+
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
64 |
+
|
65 |
+
def inference(self, inputs, output_filename):
|
66 |
+
output_path = os.path.join('data', output_filename)
|
67 |
+
image = Image.open(inputs)
|
68 |
+
hed = self.detector(image)
|
69 |
+
hed.save(output_path)
|
70 |
+
print(f"\nProcessed Image2Hed, Input Image: {inputs}, Output Hed: {output_path}")
|
71 |
+
return '/result/' + output_filename
|
72 |
+
|
73 |
+
|
74 |
+
class Image2Scribble:
|
75 |
+
def __init__(self, device):
|
76 |
+
print("Initializing Image2Scribble")
|
77 |
+
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
78 |
+
|
79 |
+
def inference(self, inputs, output_filename):
|
80 |
+
output_path = os.path.join('data', output_filename)
|
81 |
+
image = Image.open(inputs)
|
82 |
+
hed = self.detector(image, scribble=True)
|
83 |
+
hed.save(output_path)
|
84 |
+
print(f"\nProcessed Image2Hed, Input Image: {inputs}, Output Hed: {output_path}")
|
85 |
+
return '/result/' + output_filename
|
86 |
+
|
87 |
+
class InstructPix2Pix:
|
88 |
+
def __init__(self, device):
|
89 |
+
print(f"Initializing InstructPix2Pix to {device}")
|
90 |
+
self.device = device
|
91 |
+
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
92 |
+
self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix",
|
93 |
+
safety_checker=None,
|
94 |
+
torch_dtype=self.torch_dtype).to(device)
|
95 |
+
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
|
96 |
+
|
97 |
+
def inference(self, image_path, text, output_filename):
|
98 |
+
"""Change style of image."""
|
99 |
+
print("===>Starting InstructPix2Pix Inference")
|
100 |
+
original_image = Image.open(image_path)
|
101 |
+
image = self.pipe(text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2).images[0]
|
102 |
+
output_path = os.path.join('data', output_filename)
|
103 |
+
image.save(output_path)
|
104 |
+
|
105 |
+
print(f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text: {text}, "
|
106 |
+
f"Output Image: {output_path}")
|
107 |
+
return '/result/' + output_path
|
108 |
+
|
109 |
+
@app.route('/result/<filename>')
|
110 |
+
def get_result(filename):
|
111 |
+
file_path = os.path.join('data', filename)
|
112 |
+
return send_file(file_path, mimetype='image/png')
|
113 |
+
|
114 |
+
|
115 |
+
ic = ImageCaptioning("cpu")
|
116 |
+
vqa = VQA("cpu")
|
117 |
+
i2h = Image2Hed("cpu")
|
118 |
+
i2s = Image2Scribble("cpu")
|
119 |
+
# vgic = VitGPT2("cpu")
|
120 |
+
# ip2p = InstructPix2Pix("cpu")
|
121 |
+
|
122 |
+
@app.route('/image2hed', methods=['POST'])
|
123 |
+
def imag2hed():
|
124 |
+
file = request.files['file'] # 获取上传的文件
|
125 |
+
filename = str(uuid4()) + '.png'
|
126 |
+
filepath = os.path.join('data', 'upload', filename)
|
127 |
+
file.save(filepath)
|
128 |
+
output_filename = str(uuid4()) + '.png'
|
129 |
+
result = i2h.inference(filepath, output_filename)
|
130 |
+
return result
|
131 |
+
|
132 |
+
|
133 |
+
@app.route('/image2Scribble', methods=['POST'])
|
134 |
+
def image2Scribble():
|
135 |
+
file = request.files['file'] # 获取上传的文件
|
136 |
+
filename = str(uuid4()) + '.png'
|
137 |
+
filepath = os.path.join('data', 'upload', filename)
|
138 |
+
file.save(filepath)
|
139 |
+
output_filename = str(uuid4()) + '.png'
|
140 |
+
result = i2s.inference(filepath, output_filename)
|
141 |
+
return result
|
142 |
+
|
143 |
+
|
144 |
+
@app.route('/image-captioning', methods=['POST'])
|
145 |
+
def image_caption():
|
146 |
+
file = request.files['file'] # 获取上传的文件
|
147 |
+
filename = str(uuid4()) + '.png'
|
148 |
+
filepath = os.path.join('data', 'upload', filename)
|
149 |
+
file.save(filepath)
|
150 |
+
# result1 = vgic.inference(filepath)
|
151 |
+
result2 = ic.inference(filepath)
|
152 |
+
return result2
|
153 |
+
|
154 |
+
|
155 |
+
@app.route('/visual-qa', methods=['POST'])
|
156 |
+
def visual_qa():
|
157 |
+
file = request.files['file'] # 获取上传的文件
|
158 |
+
filename = str(uuid4()) + '.png'
|
159 |
+
filepath = os.path.join('data', 'upload', filename)
|
160 |
+
file.save(filepath)
|
161 |
+
question = request.args.get('q')
|
162 |
+
result = vqa.inference(filepath, question=question)
|
163 |
+
return result
|
164 |
+
|
165 |
+
@app.route('/instruct-pix2pix', methods=['POST'])
|
166 |
+
def InstructPix2Pix():
|
167 |
+
file = request.files['file'] # 获取上传的文件
|
168 |
+
filename = str(uuid4()) + '.png'
|
169 |
+
filepath = os.path.join('data', 'upload', filename)
|
170 |
+
file.save(filepath)
|
171 |
+
output_filename = str(uuid4()) + '.png'
|
172 |
+
question = request.args.get('t')
|
173 |
+
result = ip2p.inference(filepath, question, output_filename)
|
174 |
+
return result
|
175 |
+
|
176 |
+
if __name__ == '__main__':
|
177 |
+
app.run(host='0.0.0.0')
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch~=2.0.1
|
2 |
+
transformers~=4.30.2
|
3 |
+
Pillow~=9.5.0
|
4 |
+
Flask~=2.3.2
|
5 |
+
controlnet_aux==0.0.5
|
6 |
+
matplotlib
|