import gradio as gr import io import numpy as np import torch from decord import cpu, VideoReader, bridge from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import BitsAndBytesConfig import json MODEL_PATH = "THUDM/cogvlm2-llama3-caption" DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16 DELAY_REASONS = { "step1": {"reasons": ["Delay in Bead Insertion","Lack of raw material"]}, "step2": {"reasons": ["Inner Liner Adjustment by Technician","Person rebuilding defective Tire Sections"]}, "step3": {"reasons": ["Manual Adjustment in Ply1 apply","Technician repairing defective Tire Sections"]}, "step4": {"reasons": ["Delay in Bead set","Lack of raw material"]}, "step5": {"reasons": ["Delay in Turnup","Lack of raw material"]}, "step6": {"reasons": ["Person Repairing sidewall","Person rebuilding defective Tire Sections"]}, "step7": {"reasons": ["Delay in sidewall stitching","Lack of raw material"]}, "step8": {"reasons": ["No person available to load Carcass","No person available to collect tire"]} } with open('delay_reasons.json', 'w') as f: json.dump(DELAY_REASONS, f, indent=4) def load_video(video_data, strategy='chat'): bridge.set_bridge('torch') mp4_stream = video_data num_frames = 24 decord_vr = VideoReader(io.BytesIO(mp4_stream), ctx=cpu(0)) frame_id_list = [] total_frames = len(decord_vr) timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))] max_second = round(max(timestamps)) + 1 for second in range(max_second): closest_num = min(timestamps, key=lambda x: abs(x - second)) index = timestamps.index(closest_num) frame_id_list.append(index) if len(frame_id_list) >= num_frames: break video_data = decord_vr.get_batch(frame_id_list) video_data = video_data.permute(3, 0, 1, 2) return video_data def load_model(): quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=TORCH_TYPE, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4" ) tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( MODEL_PATH, torch_dtype=TORCH_TYPE, trust_remote_code=True, quantization_config=quantization_config, device_map="auto" ).eval() return model, tokenizer def predict(prompt, video_data, temperature, model, tokenizer): strategy = 'chat' video = load_video(video_data, strategy=strategy) history = [] inputs = model.build_conversation_input_ids( tokenizer=tokenizer, query=prompt, images=[video], history=history, template_version=strategy ) inputs = { 'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE), 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE), 'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE), 'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]], } gen_kwargs = { "max_new_tokens": 2048, "pad_token_id": 128002, "top_k": 1, "do_sample": False, "top_p": 0.1, "temperature": temperature, } with torch.no_grad(): outputs = model.generate(**inputs, **gen_kwargs) outputs = outputs[:, inputs['input_ids'].shape[1]:] response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response def get_base_prompt(): return """You are an expert AI model trained to analyze and interpret manufacturing processes. The task is to evaluate video footage of specific steps in a tire manufacturing process. The process has 8 total steps, but only delayed steps are provided for analysis. **Your Goal:** 1. Analyze the provided video. 2. Identify possible reasons for the delay in the manufacturing step shown in the video. 3. Provide a clear explanation of the delay based on observed factors. **Context:** Tire manufacturing involves 8 steps, and delays may occur due to machinery faults, raw material availability, labor efficiency, or unexpected disruptions. **Output:** Explain why the delay occurred in this step. Include specific observations and their connection to the delay.""" def inference(video, step_number, selected_reason): if not video: return "Please upload a video first." model, tokenizer = load_model() video_data = video.read() base_prompt = get_base_prompt() full_prompt = f"{base_prompt}\n\nAnalyzing Step {step_number}\nPossible reason: {selected_reason}" temperature = 0.8 response = predict(full_prompt, video_data, temperature, model, tokenizer) return response with gr.Blocks() as demo: with gr.Row(): with gr.Column(): video = gr.Video(label="Video Input", sources=["upload"]) step_number = gr.Dropdown(choices=[f"Step {i}" for i in range(1, 9)], label="Manufacturing Step", value="Step 1") reason = gr.Dropdown(choices=DELAY_REASONS["step1"]["reasons"], label="Possible Delay Reason", value=DELAY_REASONS["step1"]["reasons"][0]) analyze_btn = gr.Button("Analyze Delay", variant="primary") with gr.Column(): output = gr.Textbox(label="Analysis Result") def update_reasons(step): step_num = step.lower().replace(" ", "") return gr.Dropdown(choices=DELAY_REASONS[step_num]["reasons"]) step_number.change(fn=update_reasons, inputs=[step_number], outputs=[reason]) analyze_btn.click(fn=inference, inputs=[video, step_number, reason], outputs=[output]) if __name__ == "__main__": demo.queue().launch()