ibvhim commited on
Commit
8c1106e
·
1 Parent(s): 181e6cd

Delete Pictionary

Browse files
Files changed (1) hide show
  1. Pictionary/app.py +0 -47
Pictionary/app.py DELETED
@@ -1,47 +0,0 @@
1
- from pathlib import Path
2
-
3
- import gradio as gr
4
- import torch
5
- from huggingface_hub import hf_hub_download
6
- from torch import nn
7
-
8
- LABELS = Path(hf_hub_download('nateraw/quickdraw', 'class_names.txt')).read_text().splitlines()
9
-
10
- model = nn.Sequential(
11
- nn.Conv2d(1, 32, 3, padding='same'),
12
- nn.ReLU(),
13
- nn.MaxPool2d(2),
14
- nn.Conv2d(32, 64, 3, padding='same'),
15
- nn.ReLU(),
16
- nn.MaxPool2d(2),
17
- nn.Conv2d(64, 128, 3, padding='same'),
18
- nn.ReLU(),
19
- nn.MaxPool2d(2),
20
- nn.Flatten(),
21
- nn.Linear(1152, 256),
22
- nn.ReLU(),
23
- nn.Linear(256, len(LABELS)),
24
- )
25
- weights_file = hf_hub_download('nateraw/quickdraw', 'pytorch_model.bin')
26
- state_dict = torch.load(weights_file, map_location='cpu')
27
- model.load_state_dict(state_dict, strict=False)
28
- model.eval()
29
-
30
-
31
- def predict(im):
32
- x = torch.tensor(im, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.0
33
-
34
- with torch.no_grad():
35
- out = model(x)
36
-
37
- probabilities = torch.nn.functional.softmax(out[0], dim=0)
38
-
39
- values, indices = torch.topk(probabilities, 5)
40
-
41
- return {LABELS[i]: v.item() for i, v in zip(indices, values)}
42
-
43
-
44
- interface = gr.Interface(predict, inputs='sketchpad', outputs='label', live=True)
45
-
46
- if __name__ == '__main__':
47
- interface.launch(debug=True)