TeleGuide / app.py
ibrahim313's picture
Update app.py
901460b verified
raw
history blame
8.95 kB
import io
import base64
import streamlit as st
import os
from openai import OpenAI
from PIL import Image
import requests
from io import BytesIO
import json
from streamlit_lottie import st_lottie
from streamlit_option_menu import option_menu
import time
# Set page configuration
st.set_page_config(
page_title="TeleGuide | AI Telecom Assistant",
page_icon="πŸ›°οΈ",
layout="wide",
initial_sidebar_state="expanded"
)
# Function to load Lottie animations
def load_lottie(url: str):
try:
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
except:
return None
# Apply custom CSS for styling and animations
st.markdown("""
<style>
.stApp {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
}
.css-1r6slb0 {
background: white;
border-radius: 20px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.main-header {
font-size: 2.5rem;
font-weight: 700;
color: #1E3D59;
text-align: center;
margin-bottom: 2rem;
animation: fadeIn 1.5s ease-in;
}
.stButton>button {
width: 100%;
border-radius: 10px;
background: linear-gradient(45deg, #2193b0, #6dd5ed);
color: white;
border: none;
padding: 0.5rem 1rem;
transition: all 0.3s ease;
}
.stButton>button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
}
.stTextInput>div>div>input,
.stTextArea>div>div>textarea {
border-radius: 10px;
border: 2px solid #e0e0e0;
padding: 10px;
background-color: white;
}
.css-1d391kg {
background: linear-gradient(180deg, #1E3D59 0%, #2193b0 100%);
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(20px); }
to { opacity: 1; transform: translateY(0); }
}
.fade-in {
animation: fadeIn 1s ease-in;
}
.success-message {
padding: 1rem;
border-radius: 10px;
background-color: #d4edda;
color: #155724;
margin: 1rem 0;
}
.error-message {
padding: 1rem;
border-radius: 10px;
background-color: #f8d7da;
color: #721c24;
margin: 1rem 0;
}
</style>
""", unsafe_allow_html=True)
# Initialize OpenAI client with Hugging Face secrets for API key
@st.cache_resource
def get_openai_client():
try:
# Fetch the API key from Hugging Face secrets
api_key = st.secrets["api_key"]
return OpenAI(api_key=api_key, base_url="https://api.together.xyz")
except Exception as e:
st.error(f"Error initializing API client: {str(e)}")
return None
client = get_openai_client()
# Load animations
lottie_telecom = load_lottie("https://assets4.lottiefiles.com/packages/lf20_qz3tpn4w.json")
lottie_analysis = load_lottie("https://assets4.lottiefiles.com/packages/lf20_xh83pj1k.json")
# Process text query function
def process_text_query(query, model="meta-llama/Llama-3.2-3B-Instruct-Turbo"):
try:
with st.spinner("Processing your query..."):
response = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": "You are TeleGuide, an expert AI assistant specialized in telecommunication tasks. Provide detailed, practical, and accurate information."},
{"role": "user", "content": query}
],
max_tokens=500,
temperature=0.7
)
return response.choices[0].message.content
except Exception as e:
st.error(f"Error processing query: {str(e)}")
return None
# Process image query function
def process_image_query(image_base64, query, model="meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo"):
try:
with st.spinner("Analyzing image..."):
system_message = "You are TeleGuide, an expert AI assistant in telecommunications infrastructure analysis."
response = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": system_message},
{
"role": "user",
"content": [
{"type": "text", "text": query},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}
]
}
],
max_tokens=500,
temperature=0.7
)
return response.choices[0].message.content
except Exception as e:
st.error(f"Error analyzing image: {str(e)}")
return None
# Convert image to base64
def image_to_base64(image):
try:
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
except Exception as e:
st.error(f"Error converting image: {str(e)}")
return None
# Sidebar content
with st.sidebar:
st.title("πŸ›°οΈ TeleGuide")
st_lottie(lottie_telecom, height=200)
st.markdown("---")
st.info("Your AI-powered telecommunication assistant, providing expert analysis and insights.")
st.markdown("### Features")
st.markdown("""
- πŸ“ Text Analysis
- πŸ“„ Document Processing
- πŸ–ΌοΈ Image Analysis
- πŸ“‘ Infrastructure Planning
""")
st.markdown("---")
st.markdown("#### Powered by Advanced AI")
st.caption("Using Llama 3.2 Models")
# Main content
st.markdown('<h1 class="main-header">Welcome to TeleGuide</h1>', unsafe_allow_html=True)
# Navigation menu
selected = option_menu(
menu_title=None,
options=["Text Analysis", "Document Processing", "Image Analysis"],
icons=["chat-dots", "file-text", "image"],
menu_icon="cast",
default_index=0,
orientation="horizontal",
styles={
"container": {"padding": "0!important", "background-color": "transparent"},
"icon": {"color": "#1E3D59", "font-size": "25px"},
"nav-link": {
"font-size": "20px",
"text-align": "center",
"margin": "0px",
"--hover-color": "#eee",
},
"nav-link-selected": {"background-color": "#2193b0", "color": "white"},
}
)
# Handle different options from the navigation menu
if selected == "Text Analysis":
st.markdown("### πŸ’¬ Text Analysis")
st_lottie(lottie_analysis, height=200)
query = st.text_area("Enter your telecommunications query:", height=100)
if st.button("Process Query", key="text_query"):
if query:
response = process_text_query(query)
if response:
st.markdown('<div class="success-message">βœ… Query processed successfully!</div>', unsafe_allow_html=True)
st.markdown("### Response:")
st.write(response)
else:
st.warning("Please enter a query.")
elif selected == "Document Processing":
st.markdown("### πŸ“„ Document Analysis")
document_type = st.selectbox(
"Select Document Type",
["Regulatory Document", "Technical Specification", "Network Planning", "Customer Inquiry"]
)
text_input = st.text_area("Enter document text:", height=150)
if st.button("Analyze Document"):
if text_input:
response = process_text_query(f"Analyze the following {document_type}: {text_input}")
if response:
st.markdown('<div class="success-message">βœ… Document analyzed successfully!</div>', unsafe_allow_html=True)
st.markdown("### Response:")
st.write(response)
else:
st.warning("Please enter some text to analyze.")
elif selected == "Image Analysis":
st.markdown("### πŸ–ΌοΈ Image Analysis")
image_file = st.file_uploader("Upload an image for analysis", type=["jpg", "jpeg", "png"])
if image_file:
image = Image.open(image_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
query = st.text_input("Enter your query about this image:")
if st.button("Analyze Image"):
image_base64 = image_to_base64(image)
if image_base64 and query:
response = process_image_query(image_base64, query)
if response:
st.markdown('<div class="success-message">βœ… Image analyzed successfully!</div>', unsafe_allow_html=True)
st.markdown("### Response:")
st.write(response)
else:
st.warning("Please upload an image and enter a query.")
# Footer
st.markdown("---")
st.caption("πŸš€ Powered by OpenAI | Streamlit | Llama Models")