ianpan's picture
add gitignore, add option to not show heatmap
a07e07c
raw
history blame
6.63 kB
import cv2
import gradio as gr
import json
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from importlib import import_module
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from skimage.exposure import match_histograms
from skp.utils import load_model_from_config, load_kfold_ensemble_as_list
class ModelForGradCAM(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, x):
return self.model({"x": x})["logits1"]
def convert_bone_age_to_string(bone_age: float):
# bone_age in months
years = round(bone_age // 12)
months = bone_age - (years * 12)
months = round(months)
if months == 12:
years += 1
months = 0
if years == 0:
str_output = f"{months} months" if months != 1 else "1 month"
else:
if months == 0:
str_output = f"{years} years" if years != 1 else "1 year"
else:
str_output = (
f"{years} years, {months} months"
if months != 1
else f"{years} years, 1 month"
)
return str_output
device = "cuda" if torch.cuda.is_available() else "cpu"
cfg_crop = import_module("skp.configs.boneage.cfg_crop_simple_resize").cfg
crop_model = load_model_from_config(
cfg_crop, weights_path="crop.pt", device=device, eval_mode=True
)
cfg = import_module("skp.configs.boneage.cfg_female_channel_reg_cls_match_hist").cfg
cfg.backbone = "convnextv2_tiny"
model_list = load_kfold_ensemble_as_list(
cfg, [f"net{i}.pt" for i in range(3)], device=device, eval_mode=True
)
ref_img = rearrange(cv2.imread("ref_img.png", 0), "h w -> h w 1 ")
with open("greulich_and_pyle_ages.json", "r") as f:
greulich_and_pyle_ages = json.load(f)["bone_ages"]
greulich_and_pyle_ages = {k: np.asarray(v) for k, v in greulich_and_pyle_ages.items()}
model_grad_cam = ModelForGradCAM(model_list[0])
target_layers = [model_grad_cam.model.backbone.stages[-1]]
def predict_bone_age(Radiograph, Sex, Heatmap):
x0 = rearrange(Radiograph, "h w -> h w 1")
x = cfg_crop.val_transforms(image=x0)["image"]
x = torch.from_numpy(x)
x = rearrange(x, "h w c -> 1 c h w")
# crop
with torch.inference_mode():
box = crop_model({"x": x.to(device).float()}, return_loss=False)["logits"][
0
].cpu()
box[[0, 2]] = box[[0, 2]] * x0.shape[1]
box[[1, 3]] = box[[1, 3]] * x0.shape[0]
box = box.numpy().astype("int")
x, y, w, h = box
x0 = x0[y : y + h, x : x + w]
# histogram matching
x0 = match_histograms(x0, ref_img)
x = cfg.val_transforms(image=x0)["image"]
# create image channel for female/male
ch = np.zeros_like(x)
if Sex: # 0- male, 1- female
ch[...] = 255
x = np.concatenate([x, ch], axis=-1)
x = torch.from_numpy(x)
x = rearrange(x, "h w c -> 1 c h w")
with torch.inference_mode():
bone_age = []
for each_model in model_list:
pred = each_model({"x": x.to(device).float()}, return_loss=False)[
"logits1"
][0].cpu()
pred = (pred.softmax(0) * torch.arange(240)).sum().numpy()
bone_age.append(pred)
bone_age = np.mean(bone_age)
gp_ages = greulich_and_pyle_ages["female" if Sex else "male"]
diffs_gp = np.abs(bone_age - gp_ages)
diffs_gp = np.argsort(diffs_gp)
closest1 = gp_ages[diffs_gp[0]]
closest2 = gp_ages[diffs_gp[1]]
bone_age_str = convert_bone_age_to_string(bone_age)
closest1 = convert_bone_age_to_string(closest1)
closest2 = convert_bone_age_to_string(closest2)
if Heatmap:
targets = [ClassifierOutputTarget(round(bone_age))]
with GradCAM(model=model_grad_cam, target_layers=target_layers) as cam:
grayscale_cam = cam(input_tensor=x.to(device).float(), targets=targets, eigen_smooth=True)
heatmap = cv2.applyColorMap((grayscale_cam[0] * 255).astype("uint8"), cv2.COLORMAP_JET)
image = cv2.cvtColor(x[0, 0].cpu().numpy().astype("uint8"), cv2.COLOR_GRAY2RGB)
image_weight = 0.6
grad_cam_image = (1 - image_weight) * heatmap[..., ::-1] + image_weight * image
grad_cam_image = grad_cam_image.astype("uint8")
else:
# if no heatmap desired, just show image
grad_cam_image = cv2.cvtColor(x[0, 0].cpu().numpy().astype("uint8"), cv2.COLOR_GRAY2RGB)
return f"Predicted bone age: {bone_age_str}\n\nThe closest Greulich & Pyle bone ages are:\n 1) {closest1}\n 2) {closest2}", grad_cam_image
image = gr.Image(image_mode="L")
sex = gr.Radio(["Male", "Female"], type="index")
generate_heatmap = gr.Radio(["No", "Yes"], type="index")
textbox = gr.Textbox(show_label=True, label="Result")
grad_cam_image = gr.Image(image_mode="RGB", label="Heatmap / Image")
with gr.Blocks() as demo:
gr.Markdown(
"""
# Deep Learning Model for Pediatric Bone Age
This model predicts the bone age from a single frontal view hand radiograph.
The model was trained on the publicly available
[RSNA Pediatric Bone Age Challenge](https://www.rsna.org/rsnai/ai-image-challenge/rsna-pediatric-bone-age-challenge-2017) dataset.
The model achieves a mean absolute error of 4.26 months on the original test set comprising 200 multi-annotated hand radiographs,
which is competitive with [top solutions](https://pubs.rsna.org/doi/10.1148/radiol.2018180736) from the original challenge.
There is also an option to output a heatmap over the radiograph to show regions where the model is focusing on
to make its prediction. However, this takes extra computation and will increase the runtime.
This model is for demonstration purposes only and has NOT been approved by any regulatory agency for clinical use. The user assumes
any and all responsibility regarding their own use of this model and its outputs. Do NOT upload any images containing protected
health information, as this demonstration is not compliant with patient privacy laws.
Created by: Ian Pan, <https://ianpan.me>
Last updated: December 15, 2024
"""
)
gr.Interface(
fn=predict_bone_age,
inputs=[image, sex, generate_heatmap],
outputs=[textbox, grad_cam_image],
examples=[
["examples/2639.png", "Female", "Yes"],
["examples/10043.png", "Female", "No"],
["examples/8888.png", "Female", "Yes"],
],
cache_examples=False
)
if __name__ == "__main__":
demo.launch(share=True)