|
import gradio as gr |
|
from transformers import pipeline |
|
import numpy as np |
|
from PIL import Image |
|
|
|
pipe = pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch32") |
|
|
|
def shot(image, labels_text): |
|
PIL_image = Image.fromarray(np.uint8(image)).convert('RGB') |
|
labels = labels_text.split(";;") |
|
res = pipe(images=PIL_image, |
|
candidate_labels=labels, |
|
hypothesis_template="This is a photo of {}") |
|
return {dic["label"]: dic["score"] for dic in res} |
|
|
|
iface = gr.Interface(shot, |
|
["image", "text"], |
|
"label", |
|
examples=[ |
|
["examples/1.jpg", "ralph lauren;;apparel store;;ralph lauren store;;shirts;;wardrobe;;white flower"], |
|
["examples/2.JPG", "adidas;;apparel store;;adidas store;;shirts;;wardrobe;;women training;;shoes"], |
|
["examples/3.jpg", "project x;;sweet monster;;bags store;;store;;shoes store;;glass windows;;hanging lights"], |
|
["examples/4.JPG", "multi brand store;;multi brand shoe store;;shoe store;;mannequins;;adidas store;;reebok store;;puma store"], |
|
["examples/5.png", "sophie;;scene"], |
|
], |
|
description="Add a picture and a list of labels separated by ;;", |
|
title="Zero-shot Image Classification") |
|
|
|
iface.launch() |
|
|