Spaces:
Sleeping
Sleeping
corumbus
commited on
Commit
·
d1c8f90
1
Parent(s):
e63a4b0
update
Browse files- Dockerfile +20 -0
- app.py +312 -0
- requirements.txt +13 -0
Dockerfile
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM python:3.9
|
5 |
+
|
6 |
+
RUN useradd -m -u 1000 user
|
7 |
+
USER user
|
8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
9 |
+
|
10 |
+
WORKDIR /app
|
11 |
+
|
12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
14 |
+
|
15 |
+
COPY --chown=user . /app
|
16 |
+
|
17 |
+
EXPOSE 7860
|
18 |
+
|
19 |
+
# Run the Gradio app
|
20 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import stat
|
2 |
+
import gradio as gr
|
3 |
+
from llama_index.core.postprocessor import SimilarityPostprocessor
|
4 |
+
from llama_index.core.postprocessor import SentenceTransformerRerank
|
5 |
+
from llama_index.core.postprocessor import MetadataReplacementPostProcessor
|
6 |
+
from llama_index.core import StorageContext
|
7 |
+
import chromadb
|
8 |
+
from llama_index.vector_stores.chroma import ChromaVectorStore
|
9 |
+
import zipfile
|
10 |
+
import requests
|
11 |
+
import torch
|
12 |
+
from llama_index.core import Settings
|
13 |
+
from llama_index.llms.huggingface import HuggingFaceLLM
|
14 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
|
15 |
+
import sys
|
16 |
+
import logging
|
17 |
+
import os
|
18 |
+
|
19 |
+
|
20 |
+
enable_rerank = True
|
21 |
+
# sentence_window,naive,recursive_retrieval
|
22 |
+
retrieval_strategy = "sentence_window"
|
23 |
+
base_embedding_source = "hf" # local,openai,hf
|
24 |
+
# intfloat/multilingual-e5-small local:BAAI/bge-small-en-v1.5 text-embedding-3-small nvidia/NV-Embed-v2 Alibaba-NLP/gte-large-en-v1.5
|
25 |
+
base_embedding_model = "Alibaba-NLP/gte-large-en-v1.5"
|
26 |
+
# meta-llama/Llama-3.1-8B meta-llama/Llama-3.2-3B-Instruct meta-llama/Llama-2-7b-chat-hf google/gemma-2-9b CohereForAI/c4ai-command-r-plus CohereForAI/aya-23-8B
|
27 |
+
base_llm_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
28 |
+
# AdaptLLM/finance-chat
|
29 |
+
base_llm_source = "hf" # cohere,hf,anthropic
|
30 |
+
base_similarity_top_k = 20
|
31 |
+
|
32 |
+
|
33 |
+
# ChromaDB
|
34 |
+
env_extension = "_large" # _large _dev_window _large_window
|
35 |
+
db_collection = f"gte{env_extension}" # intfloat gte
|
36 |
+
read_db = True
|
37 |
+
active_chroma = True
|
38 |
+
root_path = "."
|
39 |
+
chroma_db_path = f"{root_path}/chroma_db" # ./chroma_db
|
40 |
+
# ./processed_files.json
|
41 |
+
processed_files_log = f"{root_path}/processed_files{env_extension}.json"
|
42 |
+
|
43 |
+
|
44 |
+
# check hyperparameter
|
45 |
+
if retrieval_strategy not in ["sentence_window", "naive"]: # recursive_retrieval
|
46 |
+
raise Exception(f"{retrieval_strategy} retrieval_strategy is not support")
|
47 |
+
|
48 |
+
|
49 |
+
os.environ["OPENAI_API_KEY"] = 'sk-xxxxxxxxxx'
|
50 |
+
hf_api_key = os.getenv("HF_API_KEY")
|
51 |
+
|
52 |
+
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
53 |
+
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
54 |
+
|
55 |
+
|
56 |
+
torch.cuda.empty_cache()
|
57 |
+
|
58 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
59 |
+
|
60 |
+
print(f"loading embedding ..{base_embedding_model}")
|
61 |
+
if base_embedding_source == 'hf':
|
62 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
63 |
+
Settings.embed_model = HuggingFaceEmbedding(
|
64 |
+
model_name=base_embedding_model, trust_remote_code=True) # ,
|
65 |
+
else:
|
66 |
+
raise Exception("embedding model is invalid")
|
67 |
+
|
68 |
+
# setup prompts - specific to StableLM
|
69 |
+
if base_llm_source == 'hf':
|
70 |
+
from llama_index.core import PromptTemplate
|
71 |
+
|
72 |
+
# This will wrap the default prompts that are internal to llama-index
|
73 |
+
# taken from https://huggingface.co/Writer/camel-5b-hf
|
74 |
+
query_wrapper_prompt = PromptTemplate(
|
75 |
+
"Below is an instruction that describes a task. "
|
76 |
+
"you need to make sure that user's question and retrived context mention the same stock symbol if not please give no answer to user"
|
77 |
+
"Write a response that appropriately completes the request.\n\n"
|
78 |
+
"### Instruction:\n{query_str}\n\n### Response:"
|
79 |
+
)
|
80 |
+
|
81 |
+
if base_llm_source == 'hf':
|
82 |
+
llm = HuggingFaceLLM(
|
83 |
+
context_window=2048,
|
84 |
+
max_new_tokens=512, # 256
|
85 |
+
generate_kwargs={"temperature": 0.1, "do_sample": False}, # 0.25
|
86 |
+
query_wrapper_prompt=query_wrapper_prompt,
|
87 |
+
tokenizer_name=base_llm_model,
|
88 |
+
model_name=base_llm_model,
|
89 |
+
device_map="auto",
|
90 |
+
tokenizer_kwargs={"max_length": 2048},
|
91 |
+
# uncomment this if using CUDA to reduce memory usage
|
92 |
+
model_kwargs={"torch_dtype": torch.float16}
|
93 |
+
)
|
94 |
+
|
95 |
+
Settings.chunk_size = 512
|
96 |
+
Settings.llm = llm
|
97 |
+
|
98 |
+
"""#### Load documents, build the VectorStoreIndex"""
|
99 |
+
|
100 |
+
|
101 |
+
def download_and_extract_chroma_db(url, destination):
|
102 |
+
"""Download and extract ChromaDB from Hugging Face Datasets."""
|
103 |
+
# Create destination folder if it doesn't exist
|
104 |
+
if not os.path.exists(destination):
|
105 |
+
os.makedirs(destination)
|
106 |
+
else:
|
107 |
+
# If the folder exists, remove it to ensure a fresh extract
|
108 |
+
print("Destination folder exists. Removing it...")
|
109 |
+
for root, dirs, files in os.walk(destination, topdown=False):
|
110 |
+
for file in files:
|
111 |
+
os.remove(os.path.join(root, file))
|
112 |
+
for dir in dirs:
|
113 |
+
os.rmdir(os.path.join(root, dir))
|
114 |
+
print("Destination folder cleared.")
|
115 |
+
|
116 |
+
db_zip_path = os.path.join(destination, "chroma_db.zip")
|
117 |
+
if not os.path.exists(db_zip_path):
|
118 |
+
# Download the ChromaDB zip file
|
119 |
+
print("Downloading ChromaDB from Hugging Face Datasets...")
|
120 |
+
headers = {
|
121 |
+
"Authorization": f"Bearer {hf_api_key}"
|
122 |
+
}
|
123 |
+
response = requests.get(url, headers=headers, stream=True)
|
124 |
+
response.raise_for_status()
|
125 |
+
with open(db_zip_path, "wb") as f:
|
126 |
+
for chunk in response.iter_content(chunk_size=8192):
|
127 |
+
f.write(chunk)
|
128 |
+
print("Download completed.")
|
129 |
+
else:
|
130 |
+
print("Zip file already exists, skipping download.")
|
131 |
+
|
132 |
+
# Extract the zip file
|
133 |
+
print("Extracting ChromaDB...")
|
134 |
+
with zipfile.ZipFile(db_zip_path, 'r') as zip_ref:
|
135 |
+
zip_ref.extractall(destination)
|
136 |
+
print("Extraction completed. Zip file retained.")
|
137 |
+
|
138 |
+
|
139 |
+
# URL to your dataset hosted on Hugging Face
|
140 |
+
chroma_db_url = "https://huggingface.co/datasets/iamboolean/set50-db/resolve/main/chroma_db.zip"
|
141 |
+
|
142 |
+
# Local destination for the ChromaDB
|
143 |
+
chroma_db_path_extract = "./" # You can change this to your desired path
|
144 |
+
|
145 |
+
# Download and extract the ChromaDB
|
146 |
+
download_and_extract_chroma_db(chroma_db_url, chroma_db_path_extract)
|
147 |
+
|
148 |
+
# Define ChromaDB client (persistent mode)er
|
149 |
+
db = chromadb.PersistentClient(path=chroma_db_path)
|
150 |
+
print(f"db path:{chroma_db_path}")
|
151 |
+
chroma_collection = db.get_or_create_collection(db_collection)
|
152 |
+
print(f"db collection:{db_collection}")
|
153 |
+
|
154 |
+
|
155 |
+
# Set up ChromaVectorStore and embeddings
|
156 |
+
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
157 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
158 |
+
|
159 |
+
document_count = chroma_collection.count()
|
160 |
+
print(f"Total documents in the collection: {document_count}")
|
161 |
+
|
162 |
+
index = VectorStoreIndex.from_vector_store(
|
163 |
+
vector_store=vector_store,
|
164 |
+
# embed_model=embed_model,
|
165 |
+
)
|
166 |
+
|
167 |
+
"""#### Query Index"""
|
168 |
+
|
169 |
+
|
170 |
+
rerank = SentenceTransformerRerank(
|
171 |
+
model="cross-encoder/ms-marco-MiniLM-L-2-v2", top_n=10
|
172 |
+
)
|
173 |
+
node_postprocessors = []
|
174 |
+
# node_postprocessors.append(SimilarityPostprocessor(similarity_cutoff=0.6))
|
175 |
+
|
176 |
+
if retrieval_strategy == 'sentence_window':
|
177 |
+
node_postprocessors.append(
|
178 |
+
MetadataReplacementPostProcessor(target_metadata_key="window"))
|
179 |
+
|
180 |
+
|
181 |
+
if enable_rerank:
|
182 |
+
node_postprocessors.append(rerank)
|
183 |
+
|
184 |
+
|
185 |
+
query_engine = index.as_query_engine(
|
186 |
+
similarity_top_k=base_similarity_top_k,
|
187 |
+
# the target key defaults to `window` to match the node_parser's default
|
188 |
+
node_postprocessors=node_postprocessors,
|
189 |
+
)
|
190 |
+
|
191 |
+
|
192 |
+
def metadata_formatter(metadata):
|
193 |
+
company_symbol = metadata['file_name'].split(
|
194 |
+
'-')[0] # Split at '-' and take the first part
|
195 |
+
# Split at '-' and then '.' to extract the year
|
196 |
+
year = metadata['file_name'].split('-')[1].split('.')[0]
|
197 |
+
page_number = metadata['page_label']
|
198 |
+
|
199 |
+
return f"Company File: {metadata['file_name'].split('-')[0]}, Year: {metadata['file_name'].split('-')[1].split('.')[0]}, Page Number: {metadata['page_label']}"
|
200 |
+
|
201 |
+
|
202 |
+
def query_journal(question):
|
203 |
+
|
204 |
+
response = query_engine.query(question) # Query the index
|
205 |
+
matched_nodes = response.source_nodes # Extract matched nodes
|
206 |
+
|
207 |
+
# Prepare the matched nodes details
|
208 |
+
retrieved_context = "\n".join([
|
209 |
+
# f"Node ID: {node.node_id}\n"
|
210 |
+
# f"Matched Content: {node.node.text}\n"
|
211 |
+
# f"Metadata: {node.node.metadata if node.node.metadata else 'None'}"
|
212 |
+
f"Metadata: {metadata_formatter(node.node.metadata) if node.node.metadata else 'None'}"
|
213 |
+
for node in matched_nodes
|
214 |
+
])
|
215 |
+
|
216 |
+
generated_answer = str(response)
|
217 |
+
|
218 |
+
# Return both retrieved context and detailed matched nodes
|
219 |
+
return retrieved_context, generated_answer
|
220 |
+
|
221 |
+
|
222 |
+
# Define the Gradio interface
|
223 |
+
with gr.Blocks() as app:
|
224 |
+
# Title
|
225 |
+
gr.Markdown(
|
226 |
+
"""
|
227 |
+
<div style="text-align: center;">
|
228 |
+
<h1>SET50RAG: Retrieval-Augmented Generation for Thai Public Companies Question Answering</h1>
|
229 |
+
</div>
|
230 |
+
"""
|
231 |
+
)
|
232 |
+
|
233 |
+
# Description
|
234 |
+
gr.Markdown(
|
235 |
+
"""
|
236 |
+
The **SET50RAG** tool provides an interactive way to analyze and extract insights from **243 annual reports** of Thai public companies spanning **5 years**.
|
237 |
+
By leveraging advanced **Retrieval-Augmented Generation**, including **GTE-Large embedding models**, **Sentence Window with Reranking**, and powerful **Large Language Models (LLMs)** like **Mistral-7B**, the system efficiently retrieves and answers complex financial queries.
|
238 |
+
This scalable and cost-effective solution reduces reliance on parametric knowledge, ensuring contextually accurate and relevant responses.
|
239 |
+
"""
|
240 |
+
)
|
241 |
+
|
242 |
+
# How to Use Section
|
243 |
+
gr.Markdown(
|
244 |
+
"""
|
245 |
+
### How to Use
|
246 |
+
1. Type your question in the box or select an example question below.
|
247 |
+
2. Click **Submit** to retrieve the context and get an AI-generated answer.
|
248 |
+
3. Review the retrieved context and the generated answer to gain insights.
|
249 |
+
---
|
250 |
+
"""
|
251 |
+
)
|
252 |
+
|
253 |
+
# Example Questions Section
|
254 |
+
gr.Markdown(
|
255 |
+
"""
|
256 |
+
### Example Questions
|
257 |
+
- What is the revenue of PTTOR in 2022?
|
258 |
+
- what is effect of COVID-19 on BDMS show me in Timeline format from 2019 to 2023?
|
259 |
+
- How does CPALL plan for electric vehicles?
|
260 |
+
"""
|
261 |
+
)
|
262 |
+
|
263 |
+
# Interactive Section (RAG Box)
|
264 |
+
with gr.Row():
|
265 |
+
with gr.Column():
|
266 |
+
user_question = gr.Textbox(
|
267 |
+
label="Ask a Question",
|
268 |
+
placeholder="Type your question here, e.g., 'What is the revenue of PTTOR in 2022?'",
|
269 |
+
)
|
270 |
+
example_question_button = gr.Button("Use Example Question")
|
271 |
+
with gr.Column():
|
272 |
+
generated_answer = gr.Textbox(
|
273 |
+
label="Generated Answer",
|
274 |
+
placeholder="The AI-generated answer will appear here.",
|
275 |
+
interactive=False,
|
276 |
+
)
|
277 |
+
retrieved_context = gr.Textbox(
|
278 |
+
label="Retrieved Context",
|
279 |
+
placeholder="Relevant context will appear here.",
|
280 |
+
interactive=False,
|
281 |
+
)
|
282 |
+
|
283 |
+
# Button for user interaction
|
284 |
+
submit_button = gr.Button("Submit")
|
285 |
+
|
286 |
+
# Example question logic
|
287 |
+
def use_example_question():
|
288 |
+
return "What is the revenue of PTTOR in 2022?"
|
289 |
+
|
290 |
+
example_question_button.click(
|
291 |
+
use_example_question, inputs=[], outputs=[user_question]
|
292 |
+
)
|
293 |
+
|
294 |
+
# Interaction logic for submitting user queries
|
295 |
+
submit_button.click(
|
296 |
+
query_journal, inputs=[user_question], outputs=[
|
297 |
+
retrieved_context, generated_answer]
|
298 |
+
)
|
299 |
+
|
300 |
+
# Footer
|
301 |
+
gr.Markdown(
|
302 |
+
"""
|
303 |
+
---
|
304 |
+
### Limitations and Bias:
|
305 |
+
- Optimized for Thai financial reports from SET50 companies. Results may vary for other domains.
|
306 |
+
- Retrieval and accuracy depend on data quality and embedding models.
|
307 |
+
"""
|
308 |
+
)
|
309 |
+
|
310 |
+
# Launch the app
|
311 |
+
# app.launch()
|
312 |
+
app.launch(server_name="0.0.0.0") # , server_port=7860
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ragas==0.1.22
|
2 |
+
gradio==4.44.1
|
3 |
+
llama-index
|
4 |
+
llama-index-llms-huggingface
|
5 |
+
llama_index-embeddings-huggingface
|
6 |
+
llama_index-llms-cohere
|
7 |
+
llama-index-embeddings-instructor
|
8 |
+
datasets
|
9 |
+
transformers
|
10 |
+
llama-index-embeddings-huggingface
|
11 |
+
chromadb
|
12 |
+
llama-index-vector-stores-chroma
|
13 |
+
sentencepiece
|