#!/usr/bin/env python from __future__ import annotations import argparse import os import pathlib import subprocess import tarfile if os.getenv('SYSTEM') == 'spaces': import mim mim.uninstall('mmcv-full', confirm_yes=True) mim.install('mmcv-full==1.5.2', is_yes=True) subprocess.call('pip uninstall -y opencv-python'.split()) subprocess.call('pip uninstall -y opencv-python-headless'.split()) subprocess.call('pip install opencv-python-headless'.split()) import cv2 import gradio as gr import numpy as np from model import Model DEFAULT_MODEL_TYPE = 'detection' DEFAULT_MODEL_NAMES = { 'detection': 'YOLOX-l', 'instance_segmentation': 'QueryInst (R-50-FPN)', 'panoptic_segmentation': 'MaskFormer (R-50)', } DEFAULT_MODEL_NAME = DEFAULT_MODEL_NAMES[DEFAULT_MODEL_TYPE] def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--theme', type=str) parser.add_argument('--share', action='store_true') parser.add_argument('--port', type=int) parser.add_argument('--disable-queue', dest='enable_queue', action='store_false') return parser.parse_args() def extract_tar() -> None: if pathlib.Path('mmdet_configs/configs').exists(): return with tarfile.open('mmdet_configs/configs.tar') as f: f.extractall('mmdet_configs') def update_input_image(image: np.ndarray) -> dict: if image is None: return gr.Image.update(value=None) scale = 1500 / max(image.shape[:2]) if scale < 1: image = cv2.resize(image, None, fx=scale, fy=scale) return gr.Image.update(value=image) def update_model_name(model_type: str) -> dict: model_dict = getattr(Model, f'{model_type.upper()}_MODEL_DICT') model_names = list(model_dict.keys()) model_name = DEFAULT_MODEL_NAMES[model_type] return gr.Dropdown.update(choices=model_names, value=model_name) def update_visualization_score_threshold(model_type: str) -> dict: return gr.Slider.update(visible=model_type != 'panoptic_segmentation') def update_redraw_button(model_type: str) -> dict: return gr.Button.update(visible=model_type != 'panoptic_segmentation') def set_example_image(example: list) -> dict: return gr.Image.update(value=example[0]) def main(): args = parse_args() extract_tar() model = Model(DEFAULT_MODEL_NAME, args.device) css = ''' h1#title { text-align: center; } img#overview { max-width: 1000px; max-height: 600px; } ''' with gr.Blocks(theme=args.theme, css=css) as demo: gr.Markdown('''

MMDetection

This is an unofficial demo for [https://github.com/open-mmlab/mmdetection](https://github.com/open-mmlab/mmdetection).
overview
''') with gr.Row(): with gr.Column(): with gr.Row(): input_image = gr.Image(label='Input Image', type='numpy') with gr.Group(): with gr.Row(): model_type = gr.Radio(list(DEFAULT_MODEL_NAMES.keys()), value=DEFAULT_MODEL_TYPE, label='Model Type') with gr.Row(): model_name = gr.Dropdown(list( model.DETECTION_MODEL_DICT.keys()), value=DEFAULT_MODEL_NAME, label='Model') with gr.Row(): run_button = gr.Button(value='Run') prediction_results = gr.Variable() with gr.Column(): with gr.Row(): visualization = gr.Image(label='Result', type='numpy') with gr.Row(): visualization_score_threshold = gr.Slider( 0, 1, step=0.05, value=0.3, label='Visualization Score Threshold') with gr.Row(): redraw_button = gr.Button(value='Redraw') with gr.Row(): paths = sorted(pathlib.Path('images').rglob('*.jpg')) example_images = gr.Dataset(components=[input_image], samples=[[path.as_posix()] for path in paths]) gr.Markdown( '
visitor badge
' ) input_image.change(fn=update_input_image, inputs=[input_image], outputs=[input_image]) model_type.change(fn=update_model_name, inputs=[model_type], outputs=[model_name]) model_type.change(fn=update_visualization_score_threshold, inputs=[model_type], outputs=[visualization_score_threshold]) model_type.change(fn=update_redraw_button, inputs=[model_type], outputs=[redraw_button]) model_name.change(fn=model.set_model, inputs=[model_name], outputs=None) run_button.click(fn=model.detect_and_visualize, inputs=[ input_image, visualization_score_threshold, ], outputs=[ prediction_results, visualization, ]) redraw_button.click(fn=model.visualize_detection_results, inputs=[ input_image, prediction_results, visualization_score_threshold, ], outputs=[visualization]) example_images.click(fn=set_example_image, inputs=[example_images], outputs=[input_image]) demo.launch( enable_queue=args.enable_queue, server_port=args.port, share=args.share, ) if __name__ == '__main__': main()