mmdetection / model_dict /instance_segmentation.yaml
hysts's picture
hysts HF staff
Add SOLOv2
4af4b4e
Mask R-CNN (R-50-FPN):
config: https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py
model: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_fpn_mstrain-poly_3x_coco_20210524_201154-21b550bb.pth
Mask R-CNN (X-101-64x4d-FPN):
config: https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py
model: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco_20210526_120447-c376f129.pth
Cascade Mask R-CNN (X-101-64x4d-FPN):
config: https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_mstrain_3x_coco.py
model: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_mstrain_3x_coco/cascade_mask_rcnn_x101_64x4d_fpn_mstrain_3x_coco_20210719_210311-d3e64ba0.pth
Mask Scoring R-CNN (R-X101-64x4d):
config: https://github.com/open-mmlab/mmdetection/tree/master/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco.py
model: https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco/ms_rcnn_x101_64x4d_fpn_1x_coco_20200206-86ba88d2.pth
HTC (X-101-64x4d-FPN):
config: https://github.com/open-mmlab/mmdetection/tree/master/configs/htc/htc_x101_64x4d_fpn_16x1_20e_coco.py
model: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_64x4d_fpn_16x1_20e_coco/htc_x101_64x4d_fpn_16x1_20e_coco_20200318-b181fd7a.pth
YOLACT:
config: https://github.com/open-mmlab/mmdetection/tree/master/configs/yolact/yolact_r50_1x8_coco.py
model: https://download.openmmlab.com/mmdetection/v2.0/yolact/yolact_r50_1x8_coco/yolact_r50_1x8_coco_20200908-f38d58df.pth
Instaboost (Mask R-CNN (X-101-64x4d-FPN)):
config: https://github.com/open-mmlab/mmdetection/tree/master/configs/instaboost/mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py
model: https://download.openmmlab.com/mmdetection/v2.0/instaboost/mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco/mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco_20200515_080947-8ed58c1b.pth
SOLO:
config: https://github.com/open-mmlab/mmdetection/tree/master/configs/solo/solo_r50_fpn_3x_coco.py
model: https://download.openmmlab.com/mmdetection/v2.0/solo/solo_r50_fpn_3x_coco/solo_r50_fpn_3x_coco_20210901_012353-11d224d7.pth
PointRend (R-50-FPN):
config: https://github.com/open-mmlab/mmdetection/tree/master/configs/point_rend/point_rend_r50_caffe_fpn_mstrain_3x_coco.py
model: https://download.openmmlab.com/mmdetection/v2.0/point_rend/point_rend_r50_caffe_fpn_mstrain_3x_coco/point_rend_r50_caffe_fpn_mstrain_3x_coco-e0ebb6b7.pth
DetectoRS (HTC + ResNet-101):
config: https://github.com/open-mmlab/mmdetection/tree/master/configs/detectors/detectors_htc_r101_20e_coco.py
model: https://download.openmmlab.com/mmdetection/v2.0/detectors/detectors_htc_r101_20e_coco/detectors_htc_r101_20e_coco_20210419_203638-348d533b.pth
SOLOv2 (R-50):
config: https://github.com/open-mmlab/mmdetection/tree/master/configs/solov2/solov2_r50_fpn_3x_coco.py
model: https://download.openmmlab.com/mmdetection/v2.0/solov2/solov2_r50_fpn_3x_coco/solov2_r50_fpn_3x_coco_20220512_125856-fed092d4.pth
SOLOv2 (X-101 (DCN)):
config: https://github.com/open-mmlab/mmdetection/tree/master/configs/solov2/solov2_x101_dcn_fpn_3x_coco.py
model: https://download.openmmlab.com/mmdetection/v2.0/solov2/solov2_x101_dcn_fpn_3x_coco/solov2_x101_dcn_fpn_3x_coco_20220513_214337-aef41095.pth
SCNet (X-101-64x4d-FPN):
config: https://github.com/open-mmlab/mmdetection/tree/master/configs/scnet/scnet_x101_64x4d_fpn_20e_coco.py
model: https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_x101_64x4d_fpn_20e_coco/scnet_x101_64x4d_fpn_20e_coco-fb09dec9.pth
QueryInst (R-50-FPN):
config: https://github.com/open-mmlab/mmdetection/tree/master/configs/queryinst/queryinst_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
model: https://download.openmmlab.com/mmdetection/v2.0/queryinst/queryinst_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco/queryinst_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco_20210904_101802-85cffbd8.pth
QueryInst (R-101-FPN):
config: https://github.com/open-mmlab/mmdetection/tree/master/configs/queryinst/queryinst_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
model: https://download.openmmlab.com/mmdetection/v2.0/queryinst/queryinst_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco/queryinst_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco_20210904_153621-76cce59f.pth
Mask2Former (R-50):
config: https://github.com/open-mmlab/mmdetection/tree/master/configs/mask2former/mask2former_r50_lsj_8x2_50e_coco.py
model: https://download.openmmlab.com/mmdetection/v2.0/mask2former/mask2former_r50_lsj_8x2_50e_coco/mask2former_r50_lsj_8x2_50e_coco_20220506_191028-8e96e88b.pth
Mask2Former (Swin-S):
config: https://github.com/open-mmlab/mmdetection/tree/master/configs/mask2former/mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco.py
model: https://download.openmmlab.com/mmdetection/v2.0/mask2former/mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco/mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco_20220504_001756-743b7d99.pth