Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import os | |
import huggingface_hub | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import yaml | |
from mmdet.apis import inference_detector, init_detector | |
def _load_model_dict(path: str) -> dict[str, dict[str, str]]: | |
with open(path) as f: | |
dic = yaml.safe_load(f) | |
_update_config_path(dic) | |
_update_model_dict_if_hf_token_is_given(dic) | |
return dic | |
def _update_config_path(model_dict: dict[str, dict[str, str]]) -> None: | |
for dic in model_dict.values(): | |
dic['config'] = dic['config'].replace( | |
'https://github.com/open-mmlab/mmdetection/tree/master', | |
'mmdet_configs') | |
def _update_model_dict_if_hf_token_is_given( | |
model_dict: dict[str, dict[str, str]]) -> None: | |
token = os.getenv('HF_TOKEN') | |
if token is None: | |
return | |
for dic in model_dict.values(): | |
ckpt_path = dic['model'] | |
name = ckpt_path.split('/')[-1] | |
ckpt_path = huggingface_hub.hf_hub_download('hysts/mmdetection', | |
f'models/{name}', | |
use_auth_token=token) | |
dic['model'] = ckpt_path | |
class Model: | |
DETECTION_MODEL_DICT = _load_model_dict('model_dict/detection.yaml') | |
INSTANCE_SEGMENTATION_MODEL_DICT = _load_model_dict( | |
'model_dict/instance_segmentation.yaml') | |
PANOPTIC_SEGMENTATION_MODEL_DICT = _load_model_dict( | |
'model_dict/panoptic_segmentation.yaml') | |
MODEL_DICT = DETECTION_MODEL_DICT | INSTANCE_SEGMENTATION_MODEL_DICT | PANOPTIC_SEGMENTATION_MODEL_DICT | |
def __init__(self, model_name: str, device: str | torch.device): | |
self.device = torch.device(device) | |
self._load_all_models_once() | |
self.model = self._load_model(model_name) | |
def _load_all_models_once(self) -> None: | |
for name in self.MODEL_DICT: | |
self._load_model(name) | |
def _load_model(self, name: str) -> nn.Module: | |
dic = self.MODEL_DICT[name] | |
return init_detector(dic['config'], dic['model'], device=self.device) | |
def set_model(self, name: str) -> None: | |
self.model = self._load_model(name) | |
def detect_and_visualize( | |
self, image: np.ndarray, score_threshold: float | |
) -> tuple[list[np.ndarray] | tuple[list[np.ndarray], | |
list[list[np.ndarray]]] | |
| dict[str, np.ndarray], np.ndarray]: | |
out = self.detect(image) | |
vis = self.visualize_detection_results(image, out, score_threshold) | |
return out, vis | |
def detect( | |
self, image: np.ndarray | |
) -> list[np.ndarray] | tuple[ | |
list[np.ndarray], list[list[np.ndarray]]] | dict[str, np.ndarray]: | |
image = image[:, :, ::-1] # RGB -> BGR | |
out = inference_detector(self.model, image) | |
return out | |
def visualize_detection_results( | |
self, | |
image: np.ndarray, | |
detection_results: list[np.ndarray] | |
| tuple[list[np.ndarray], list[list[np.ndarray]]] | |
| dict[str, np.ndarray], | |
score_threshold: float = 0.3) -> np.ndarray: | |
image = image[:, :, ::-1] # RGB -> BGR | |
vis = self.model.show_result(image, | |
detection_results, | |
score_thr=score_threshold, | |
bbox_color=None, | |
text_color=(200, 200, 200), | |
mask_color=None) | |
return vis[:, :, ::-1] # BGR -> RGB | |