hysts commited on
Commit
23b1ff8
·
1 Parent(s): 80d903f
Files changed (2) hide show
  1. app.py +3 -2
  2. model.py +7 -1
app.py CHANGED
@@ -20,6 +20,8 @@ DESCRIPTION = '''# Text2Human
20
 
21
  This is an unofficial demo for <a href="https://github.com/yumingj/Text2Human">https://github.com/yumingj/Text2Human</a>.
22
  You can modify sample steps and seeds. By varying seeds, you can sample different human images under the same pose, shape description, and texture description. The larger the sample steps, the better quality of the generated images. (The default value of sample steps is 256 in the original repo.)
 
 
23
  '''
24
  FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.text2human" />'
25
 
@@ -68,8 +70,7 @@ def main():
68
  with gr.Row():
69
  label_image = gr.Image(label='Label Image',
70
  type='numpy',
71
- elem_id='label-image',
72
- interactive=False)
73
  with gr.Row():
74
  shape_text = gr.Textbox(
75
  label='Shape Description',
 
20
 
21
  This is an unofficial demo for <a href="https://github.com/yumingj/Text2Human">https://github.com/yumingj/Text2Human</a>.
22
  You can modify sample steps and seeds. By varying seeds, you can sample different human images under the same pose, shape description, and texture description. The larger the sample steps, the better quality of the generated images. (The default value of sample steps is 256 in the original repo.)
23
+
24
+ Label image generation step can be skipped. However, in that case, the input label image must be 512x256 in size and must contain only the specified colors.
25
  '''
26
  FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.text2human" />'
27
 
 
70
  with gr.Row():
71
  label_image = gr.Image(label='Label Image',
72
  type='numpy',
73
+ elem_id='label-image')
 
74
  with gr.Row():
75
  shape_text = gr.Textbox(
76
  label='Shape Description',
model.py CHANGED
@@ -52,6 +52,7 @@ class Model:
52
  self.config['device'] = device
53
  self._download_models()
54
  self.model = SampleFromPoseModel(self.config)
 
55
 
56
  def _load_config(self) -> dict:
57
  path = 'Text2Human/configs/sample_from_pose.yml'
@@ -84,10 +85,13 @@ class Model:
84
 
85
  @staticmethod
86
  def process_mask(mask: torch.Tensor) -> torch.Tensor:
 
 
87
  seg_map = np.full(mask.shape[:-1], -1)
88
  for index, color in enumerate(COLOR_LIST):
89
  seg_map[np.sum(mask == color, axis=2) == 3] = index
90
- assert (seg_map != -1).all()
 
91
  return seg_map
92
 
93
  @staticmethod
@@ -124,6 +128,8 @@ class Model:
124
  return
125
  mask = label_image.copy()
126
  seg_map = self.process_mask(mask)
 
 
127
  self.model.segm = torch.from_numpy(seg_map).unsqueeze(0).unsqueeze(
128
  0).to(self.model.device)
129
  self.model.generate_quantized_segm()
 
52
  self.config['device'] = device
53
  self._download_models()
54
  self.model = SampleFromPoseModel(self.config)
55
+ self.model.batch_size = 1
56
 
57
  def _load_config(self) -> dict:
58
  path = 'Text2Human/configs/sample_from_pose.yml'
 
85
 
86
  @staticmethod
87
  def process_mask(mask: torch.Tensor) -> torch.Tensor:
88
+ if mask.shape != (512, 256, 3):
89
+ return None
90
  seg_map = np.full(mask.shape[:-1], -1)
91
  for index, color in enumerate(COLOR_LIST):
92
  seg_map[np.sum(mask == color, axis=2) == 3] = index
93
+ if not (seg_map != -1).all():
94
+ return None
95
  return seg_map
96
 
97
  @staticmethod
 
128
  return
129
  mask = label_image.copy()
130
  seg_map = self.process_mask(mask)
131
+ if seg_map is None:
132
+ return
133
  self.model.segm = torch.from_numpy(seg_map).unsqueeze(0).unsqueeze(
134
  0).to(self.model.device)
135
  self.model.generate_quantized_segm()