Spaces:
Running
Running
File size: 6,624 Bytes
5eeb557 a0c1ef8 a6f75f6 5eeb557 b56cca7 c708775 b56cca7 5eeb557 f4c3380 b56cca7 5eeb557 c683c90 5eeb557 6ef5d37 5eeb557 6ef5d37 b56cca7 5eeb557 c683c90 5eeb557 c683c90 5eeb557 c683c90 5eeb557 c683c90 5eeb557 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import os
import pathlib
import subprocess
import gradio as gr
if os.getenv('SYSTEM') == 'spaces':
subprocess.run('pip uninstall -y mmcv-full'.split())
subprocess.run('pip install mmcv-full==1.5.2'.split())
with open('patch') as f:
subprocess.run('patch -p1'.split(), cwd='Text2Human', stdin=f)
from model import Model
DESCRIPTION = '''# Text2Human
This is an unofficial demo for <a href="https://github.com/yumingj/Text2Human">https://github.com/yumingj/Text2Human</a>.
You can modify sample steps and seeds. By varying seeds, you can sample different human images under the same pose, shape description, and texture description. The larger the sample steps, the better quality of the generated images. (The default value of sample steps is 256 in the original repo.)
Label image generation step can be skipped. However, in that case, the input label image must be 512x256 in size and must contain only the specified colors.
'''
FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.text2human" />'
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
return parser.parse_args()
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
def set_example_text(example: list) -> dict:
return gr.Textbox.update(value=example[0])
def main():
args = parse_args()
model = Model(args.device)
with gr.Blocks(theme=args.theme, css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label='Input Pose Image',
type='pil',
elem_id='input-image')
pose_data = gr.Variable()
with gr.Row():
paths = sorted(pathlib.Path('pose_images').glob('*.png'))
example_images = gr.Dataset(components=[input_image],
samples=[[path.as_posix()]
for path in paths])
with gr.Row():
shape_text = gr.Textbox(
label='Shape Description',
placeholder=
'''<gender>, <sleeve length>, <length of lower clothing>, <outer clothing type>, <other accessories1>, ...
Note: The outer clothing type and accessories can be omitted.''')
with gr.Row():
shape_example_texts = gr.Dataset(
components=[shape_text],
samples=[['man, sleeveless T-shirt, long pants'],
['woman, short-sleeve T-shirt, short jeans']])
with gr.Row():
generate_label_button = gr.Button('Generate Label Image')
with gr.Column():
with gr.Row():
label_image = gr.Image(label='Label Image',
type='numpy',
elem_id='label-image')
with gr.Row():
texture_text = gr.Textbox(
label='Texture Description',
placeholder=
'''<upper clothing texture>, <lower clothing texture>, <outer clothing texture>
Note: Currently, only 5 types of textures are supported, i.e., pure color, stripe/spline, plaid/lattice, floral, denim.'''
)
with gr.Row():
texture_example_texts = gr.Dataset(
components=[texture_text],
samples=[['pure color, denim'], ['floral, stripe']])
with gr.Row():
sample_steps = gr.Slider(10,
300,
value=10,
step=10,
label='Sample Steps')
with gr.Row():
seed = gr.Slider(0, 1000000, value=0, step=1, label='Seed')
with gr.Row():
generate_human_button = gr.Button('Generate Human')
with gr.Column():
with gr.Row():
result = gr.Image(label='Result',
type='numpy',
elem_id='result-image')
gr.Markdown(FOOTER)
input_image.change(fn=model.process_pose_image,
inputs=input_image,
outputs=pose_data)
generate_label_button.click(fn=model.generate_label_image,
inputs=[
pose_data,
shape_text,
],
outputs=label_image)
generate_human_button.click(fn=model.generate_human,
inputs=[
label_image,
texture_text,
sample_steps,
seed,
],
outputs=result)
example_images.click(fn=set_example_image,
inputs=example_images,
outputs=example_images.components)
shape_example_texts.click(fn=set_example_text,
inputs=shape_example_texts,
outputs=shape_example_texts.components)
texture_example_texts.click(fn=set_example_text,
inputs=texture_example_texts,
outputs=texture_example_texts.components)
demo.launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|