Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,687 Bytes
feb3220 6a6f2a6 feb3220 d0fbcd0 feb3220 7192eed feb3220 3f8fe83 01bbe20 6a6f2a6 3f8fe83 01bbe20 3f8fe83 feb3220 d0fbcd0 feb3220 6a6f2a6 feb3220 d0fbcd0 feb3220 c4bc238 3f8fe83 feb3220 3f8fe83 2d40e1e feb3220 3f8fe83 feb3220 3f8fe83 feb3220 3f8fe83 c4bc238 feb3220 d0fbcd0 e3aa0e4 feb3220 3f8fe83 c4bc238 feb3220 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
#!/usr/bin/env python
import pathlib
import shlex
import subprocess
import gradio as gr
import PIL.Image
import spaces
from model import Model
from settings import MAX_SEED
from utils import randomize_seed_fn
def create_demo(model: Model) -> gr.Blocks:
if not pathlib.Path("corgi.png").exists():
subprocess.run( # noqa: S603
shlex.split(
"wget https://raw.githubusercontent.com/openai/shap-e/d99cedaea18e0989e340163dbaeb4b109fa9e8ec/shap_e/examples/example_data/corgi.png -O corgi.png"
),
check=True,
)
examples = ["corgi.png"]
@spaces.GPU
def process_example_fn(image_path: str) -> str:
return model.run_image(image_path)
@spaces.GPU
def run(image: PIL.Image.Image, seed: int, guidance_scale: float, num_inference_steps: int) -> str:
return model.run_image(image, seed, guidance_scale, num_inference_steps)
with gr.Blocks() as demo:
with gr.Group():
image = gr.Image(label="Input image", show_label=False, type="pil")
run_button = gr.Button("Run")
result = gr.Model3D(label="Result", show_label=False)
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1,
maximum=20,
step=0.1,
value=3.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=2,
maximum=100,
step=1,
value=64,
)
gr.Examples(
examples=examples,
inputs=image,
outputs=result,
fn=process_example_fn,
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
api_name=False,
concurrency_limit=None,
).then(
fn=run,
inputs=[
image,
seed,
guidance_scale,
num_inference_steps,
],
outputs=result,
api_name="image-to-3d",
concurrency_id="gpu",
concurrency_limit=1,
)
return demo
|