Spaces:
Running
Running
File size: 3,150 Bytes
42554ac 43b5ceb 42554ac 43b5ceb 42554ac 43b5ceb 42554ac 43b5ceb 42554ac 43b5ceb 3ead889 43b5ceb 42554ac 43b5ceb 42554ac 43b5ceb 42554ac 43b5ceb 3ead889 43b5ceb 42554ac 76cbdff 43b5ceb 76cbdff 42554ac 793d0f2 43b5ceb 42554ac 43b5ceb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import streamlit as st
from langchain_core.messages import AIMessage
def get_openai_token_usage(aimessage: AIMessage, model_info: dict):
input_tokens = aimessage.usage_metadata["input_tokens"]
output_tokens = aimessage.usage_metadata["output_tokens"]
cost = (
input_tokens * 1e-6 * model_info["cost"]["pmi"]
+ output_tokens * 1e-6 * model_info["cost"]["pmo"]
)
return {
"input_tokens": input_tokens,
"output_tokens": output_tokens,
"cost": cost,
}
def get_anthropic_token_usage(aimessage: AIMessage, model_info: dict):
input_tokens = aimessage.usage_metadata["input_tokens"]
output_tokens = aimessage.usage_metadata["output_tokens"]
cost = (
input_tokens * 1e-6 * model_info["cost"]["pmi"]
+ output_tokens * 1e-6 * model_info["cost"]["pmo"]
)
return {
"input_tokens": input_tokens,
"output_tokens": output_tokens,
"cost": cost,
}
def get_together_token_usage(aimessage: AIMessage, model_info: dict):
input_tokens = aimessage.usage_metadata["input_tokens"]
output_tokens = aimessage.usage_metadata["output_tokens"]
cost = (
input_tokens * 1e-6 * model_info["cost"]["pmi"]
+ output_tokens * 1e-6 * model_info["cost"]["pmo"]
)
return {
"input_tokens": input_tokens,
"output_tokens": output_tokens,
"cost": cost,
}
def get_google_token_usage(aimessage: AIMessage, model_info: dict):
input_tokens = aimessage.usage_metadata["input_tokens"]
output_tokens = aimessage.usage_metadata["output_tokens"]
cost = (
input_tokens * 1e-6 * model_info["cost"]["pmi"]
+ output_tokens * 1e-6 * model_info["cost"]["pmo"]
)
return {
"input_tokens": input_tokens,
"output_tokens": output_tokens,
"cost": cost,
}
def get_token_usage(aimessage: AIMessage, model_info: dict, provider: str):
match provider:
case "OpenAI":
return get_openai_token_usage(aimessage, model_info)
case "Anthropic":
return get_anthropic_token_usage(aimessage, model_info)
case "Together":
return get_together_token_usage(aimessage, model_info)
case "Google":
return get_google_token_usage(aimessage, model_info)
case _:
raise ValueError()
def display_api_usage(
aimessage: AIMessage, model_info: dict, provider: str, tag: str | None = None
):
with st.container(border=True):
if tag is None:
st.write("API Usage")
else:
st.write(f"API Usage ({tag})")
token_usage = get_token_usage(aimessage, model_info, provider)
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Input Tokens", token_usage["input_tokens"])
with col2:
st.metric("Output Tokens", token_usage["output_tokens"])
with col3:
st.metric("Cost", f"${token_usage['cost']:.4f}")
with st.expander("AIMessage Metadata"):
dd = {key: val for key, val in aimessage.dict().items() if key != "content"}
st.write(dd)
|