Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import torch | |
import numpy as np | |
from scipy import misc | |
def load_test_data(image_path, size=256): | |
img = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) | |
if img is None: | |
return None | |
h, w, c = img.shape | |
if img.shape[2] == 4: | |
white = np.ones((h, w, 3), np.uint8) * 255 | |
img_rgb = img[:, :, :3].copy() | |
mask = img[:, :, 3].copy() | |
mask = (mask / 255).astype(np.uint8) | |
img = (img_rgb * mask[:, :, np.newaxis]).astype(np.uint8) + white * (1 - mask[:, :, np.newaxis]) | |
img = cv2.resize(img, (size, size), cv2.INTER_AREA) | |
img = RGB2BGR(img) | |
img = np.expand_dims(img, axis=0) | |
img = preprocessing(img) | |
return img | |
def preprocessing(x): | |
x = x/127.5 - 1 | |
# -1 ~ 1 | |
return x | |
def save_images(images, size, image_path): | |
return imsave(inverse_transform(images), size, image_path) | |
def inverse_transform(images): | |
return (images+1.) / 2 | |
def imsave(images, size, path): | |
return misc.imsave(path, merge(images, size)) | |
def merge(images, size): | |
h, w = images.shape[1], images.shape[2] | |
img = np.zeros((h * size[0], w * size[1], 3)) | |
for idx, image in enumerate(images): | |
i = idx % size[1] | |
j = idx // size[1] | |
img[h*j:h*(j+1), w*i:w*(i+1), :] = image | |
return img | |
def check_folder(log_dir): | |
if not os.path.exists(log_dir): | |
os.makedirs(log_dir) | |
return log_dir | |
def str2bool(x): | |
return x.lower() in ('true') | |
def cam(x, size=256): | |
x = x - np.min(x) | |
cam_img = x / np.max(x) | |
cam_img = np.uint8(255 * cam_img) | |
cam_img = cv2.resize(cam_img, (size, size)) | |
cam_img = cv2.applyColorMap(cam_img, cv2.COLORMAP_JET) | |
return cam_img / 255.0 | |
def imagenet_norm(x): | |
mean = [0.485, 0.456, 0.406] | |
std = [0.299, 0.224, 0.225] | |
mean = torch.FloatTensor(mean).unsqueeze(0).unsqueeze(2).unsqueeze(3).to(x.device) | |
std = torch.FloatTensor(std).unsqueeze(0).unsqueeze(2).unsqueeze(3).to(x.device) | |
return (x - mean) / std | |
def denorm(x): | |
return x * 0.5 + 0.5 | |
def tensor2numpy(x): | |
return x.detach().cpu().numpy().transpose(1, 2, 0) | |
def RGB2BGR(x): | |
return cv2.cvtColor(x, cv2.COLOR_RGB2BGR) | |