photo2cartoon / p2c /test_onnx.py
hylee's picture
init
c47cf0c
import os
import cv2
import numpy as np
import onnxruntime
from utils import Preprocess
class Photo2Cartoon:
def __init__(self):
self.pre = Preprocess()
curPath = os.path.abspath(os.path.dirname(__file__))
print(os.path.join(curPath, 'models/photo2cartoon_weights.onnx'))
# assert os.path.exists('./models/photo2cartoon_weights.onnx'), "[Step1: load weights] Can not find 'photo2cartoon_weights.onnx' in folder 'models!!!'"
self.session = onnxruntime.InferenceSession(os.path.join(curPath, 'models/photo2cartoon_weights.onnx'))
print('[Step1: load weights] success!')
def inference(self, in_path):
img = cv2.cvtColor(cv2.imread(in_path), cv2.COLOR_BGR2RGB)
# face alignment and segmentation
face_rgba = self.pre.process(img)
if face_rgba is None:
print('[Step2: face detect] can not detect face!!!')
return None
print('[Step2: face detect] success!')
face_rgba = cv2.resize(face_rgba, (256, 256), interpolation=cv2.INTER_AREA)
face = face_rgba[:, :, :3].copy()
mask = face_rgba[:, :, 3][:, :, np.newaxis].copy() / 255.
face = (face * mask + (1 - mask) * 255) / 127.5 - 1
face = np.transpose(face[np.newaxis, :, :, :], (0, 3, 1, 2)).astype(np.float32)
# inference
cartoon = self.session.run(['output'], input_feed={'input': face})
# post-process
cartoon = np.transpose(cartoon[0][0], (1, 2, 0))
cartoon = (cartoon + 1) * 127.5
cartoon = (cartoon * mask + 255 * (1 - mask)).astype(np.uint8)
#cartoon = cv2.cvtColor(cartoon, cv2.COLOR_RGB2BGR)
print('[Step3: photo to cartoon] success!')
return cartoon
if __name__ == '__main__':
c2p = Photo2Cartoon()
cartoon = c2p.inference('')
if cartoon is not None:
print('Cartoon portrait has been saved successfully!')