Spaces:
Runtime error
Runtime error
File size: 22,215 Bytes
ef23634 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Pre-requisites\n",
"\n",
"- Python 3.5+\n",
"- Python packages: \n",
" - `pip install bs4 pandas mmh3`\n",
"- [Indic NLP Library](https://github.com/anoopkunchukuttan/indic_nlp_library)\n",
"- [Indic NLP Resources](https://github.com/anoopkunchukuttan/indic_nlp_resources)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Initialize the Indic NLP Library\n",
"\n",
"Run the cell below to initialize the Indic NLP Library"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# The path to the local git repo for Indic NLP Library\n",
"INDIC_NLP_LIB_HOME=\"/disk1/src/indic_nlp_library\"\n",
"\n",
"# The path to the local git repo for Indic NLP Resources\n",
"INDIC_NLP_RESOURCES=\"/disk1/src/indic_nlp_resources\"\n",
"\n",
"import sys\n",
"sys.path.append('{}/src'.format(INDIC_NLP_LIB_HOME))\n",
"\n",
"from indicnlp import common\n",
"common.set_resources_path(INDIC_NLP_RESOURCES)\n",
"\n",
"from indicnlp import loader\n",
"loader.load()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from bs4 import BeautifulSoup\n",
"import os\n",
"import string\n",
"import indicnlp\n",
"from indicnlp.tokenize import indic_tokenize\n",
"from indicnlp.normalize import indic_normalize\n",
"from indicnlp.transliterate import unicode_transliterate\n",
"from indicnlp.tokenize import sentence_tokenize\n",
"import re\n",
"import collections\n",
"import random\n",
"import mmh3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Common Functions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def preprocess_sent(text,lang,normalizer):\n",
" \"\"\"\n",
" Pre-process text (normalization and tokenization)\n",
" \n",
" text: text string to preprocess\n",
" lang: language code (2-letter ISO code)\n",
" normalizer: normalizer object for language\n",
" \n",
" returns the processed text string\n",
" \"\"\"\n",
" return ' '.join(indic_tokenize.trivial_tokenize(normalizer.normalize(text.replace('\\n',' ')),lang)) \n",
"\n",
"def sent_split(text,lang):\n",
" \"\"\"\n",
" Sentence splitter\n",
" \n",
" text: text to sentence split \n",
" lang: language\n",
" \n",
" returns list of sentences \n",
" \"\"\"\n",
" return sentence_tokenize.sentence_split(text,lang)\n",
"\n",
"def extract_all_content(indir,lang,\n",
" article_extract_fn,\n",
" preprocess_fn=preprocess_sent,\n",
" narticles=-1,\n",
" start_artid=0):\n",
" \"\"\"\n",
" This method reads all files from the input directory, extracts text content from each file,\n",
" and pre-processes the text. This method is a generator. \n",
" For each sentence, the method yields a tuple of the format: \n",
" \n",
" (artid, fname, paraid, sentid, processed_text)\n",
" \n",
" indir: path to input directoryo containing files to be parsed \n",
" \n",
" lang: language to the files in the input directory\n",
" \n",
" article_extract_fn: the function to extract text content from each file. \n",
" Signature of the function: get_article_contents(fname,lang,encoding) \n",
" `fname` is name of the file, `lang` is langcode, \n",
" `encoding` is text-encoding (default=utf-8). \n",
" The function yields a tuple (paraid, sentid, extracted_text) \n",
" for each sentence.\n",
" \n",
" preprocess_fn: pre-processing function to apply to the extracted text. \n",
" The function takes a string as input and returns processed string as output.\n",
" \n",
" narticles: extract and process the first `narticles` from input directory. \n",
" if narticles=-1 (default), all files are extracted\n",
" \n",
" start_artid: the start of the article id to assign to extracted articles (default=0)\n",
" \n",
" \"\"\"\n",
"\n",
" fnames = os.listdir(indir)\n",
" if narticles>0:\n",
" fnames=fnames[:narticles]\n",
" nsent=0\n",
"\n",
" normalizer_factory=indic_normalize.IndicNormalizerFactory()\n",
" normalizer=normalizer_factory.get_normalizer(lang)\n",
" \n",
" print('Number of articles: {}'.format(len(fnames)))\n",
" for artid, fname in enumerate(fnames,start_artid):\n",
"# print(fname)\n",
" if artid%100 == 0:\n",
" print('({}|{})'.format(artid,nsent),end=' ... ')\n",
" \n",
" try:\n",
" fpath=os.sep.join([indir,fname])\n",
" for paraid, sentid, sent in article_extract_fn(fpath,lang):\n",
" nsent+=1\n",
" yield( ( artid, fname, paraid, sentid, preprocess_fn(sent,lang,normalizer) ) )\n",
" except:\n",
" print('Cannot parse {}'.format(fname))\n",
" \n",
"def write_corpus(corpus_iterator,content_fname,article_mapping_fname,delimiter=' ||| ', encoding='utf-8'):\n",
" \"\"\"\n",
" Writes the extracted corpus to a file. The extracted data is organized in terms of articles, paragraphs \n",
" and sentences. The following is the format of the output file: \n",
" - one line per sentence\n",
" - format of line: article_id, para_id, sent_id, sentence\n",
" In addition to the content file mention, a metadata file which maps the article id to the filename is also written. \n",
" \n",
" corpus_iterator: iterator over the corpus, yielding tuple (artid, fname, paraid, sentid, processed_text). \n",
" The function `extract_all_content` yields a generator in this format. \n",
" content_fname: output content file to write the extracted data to in the format mentioned above\n",
" article_mapping_fname: output metadata file to write article id to filename mapping.\n",
" delimiter=' ||| ': delimiter for the content file. The default delimiter is the same \n",
" as used in the Moses phrase table\n",
" encoding: text encoding default - 'utf-8'\n",
" \n",
" \"\"\"\n",
" \n",
" artid_name_mapping={}\n",
" with open(content_fname,'w',encoding=encoding) as contentfile:\n",
" for artid, fname, paraid, sentid, text in corpus_iterator:\n",
" contentfile.write(delimiter.join([str(artid), str(paraid), str(sentid), text]) + '\\n')\n",
" artid_name_mapping[artid]=fname\n",
"\n",
" with open(article_mapping_fname,'w',encoding=encoding) as artmappingfile:\n",
" for artid, name in sorted(artid_name_mapping.items(),key=lambda x: x[0]):\n",
" artmappingfile.write('{} {} {}\\n'.format(artid,delimiter,name))\n",
"\n",
"def convert_txt_to_csv_format(infname, outfname, encoding='utf-8'):\n",
" \"\"\"\n",
" convert txt file to csv format. This method is used when the text file is directly available.\n",
" The input file has one sentence per line. Assumed to be preprocessed (tokenized, normalized)\n",
" \n",
" \"\"\"\n",
" with open(infname,'r',encoding=encoding) as infile, \\\n",
" open(outfname,'w',encoding=encoding) as outfile: \n",
" for i, line in enumerate(infile):\n",
" outfile.write('0 ||| 0 ||| {} ||| {}\\n'.format(i,line.strip()))\n",
" \n",
"def preprocess_convert_txt_to_csv_format(infname, outfname, lang, encoding='utf-8'):\n",
" \"\"\"\n",
" Convert raw text file to csv format\n",
" \"\"\"\n",
" \n",
" normalizer_factory=indic_normalize.IndicNormalizerFactory()\n",
" normalizer=normalizer_factory.get_normalizer(lang)\n",
" \n",
" with open(infname,'r',encoding=encoding) as infile, \\\n",
" open(outfname,'w',encoding=encoding) as outfile: \n",
" i=0\n",
" for line in infile:\n",
" sents = sent_split(line.strip(),lang)\n",
" for sent in sents:\n",
" outfile.write('0 ||| 0 ||| {} ||| {}\\n'.format(i,\n",
" preprocess_sent(sent.strip(), lang, normalizer)) )\n",
" i=i+1\n",
"\n",
"def print_txt(infnames, outfname, encoding='utf-8'):\n",
" \"\"\"\n",
" Extract only the text from the content csv file. The output file has one sentence per file.\n",
" \"\"\"\n",
" with open(outfname,'w',encoding=encoding) as outfile: \n",
" for infname in filter(lambda x: os.path.isfile(x),infnames):\n",
" with open(infname,'r',encoding=encoding) as infile:\n",
" for i, line in enumerate(infile):\n",
" fields=line.strip().split('|||')\n",
" if len(fields) >=4:\n",
" outfile.write('{}\\n'.format(fields[3].strip()))\n",
" \n",
"# def dedup_and_print_txt(infnames, outfname, encoding='utf-8'):\n",
" \n",
"# total=0\n",
"# unique=0\n",
"# hash_codes=set()\n",
" \n",
"# with open(outfname,'w',encoding=encoding) as outfile: \n",
"# for infname in filter(lambda x: os.path.isfile(x),infnames):\n",
"# with open(infname,'r',encoding=encoding) as infile:\n",
"# for i, line in enumerate(infile):\n",
"# fields=line.strip().split('|||')\n",
"# if len(fields) >=4:\n",
"# sent=fields[3].strip()\n",
"# total+=1\n",
"# hs=hash(sent)\n",
"# if hs not in hash_codes:\n",
"# outfile.write('{}\\n'.format(sent))\n",
"# hash_codes.add(hs)\n",
"# unique+=1\n",
" \n",
"# print('Total: {}'.format(total))\n",
"# print('Unique: {}'.format(unique))\n",
"\n",
"def dedup_shuffle_and_print_txt(infnames, outfname, max_buf_size=100000,encoding='utf-8'):\n",
" \"\"\"\n",
" The method creates a sentence level corpora from multiple content csv files.\n",
" All sentences are extracted, they are de-duplicated using murmurhash and shuffled\n",
" before writing the entire corpus to the output file. The output file has one sentence per line.\n",
"\n",
" \"\"\"\n",
" \n",
" total=0\n",
" unique=0\n",
" hash_codes=set()\n",
" sent_buffer=[]\n",
" \n",
" with open(outfname,'w',encoding=encoding) as outfile: \n",
" for infname in filter(lambda x: os.path.isfile(x),infnames):\n",
" print('Processing: {}'.format(infname))\n",
" with open(infname,'r',encoding=encoding) as infile:\n",
" for i, line in enumerate(infile):\n",
" fields=line.strip().split('|||')\n",
" if len(fields) >=4:\n",
" sent=fields[3].strip()\n",
" total+=1\n",
"# hs=hash(sent)\n",
" hs=mmh3.hash128(sent)\n",
" if hs not in hash_codes:\n",
"# outfile.write('{}\\n'.format(sent))\n",
" sent_buffer.append(sent)\n",
" hash_codes.add(hs)\n",
" unique+=1\n",
" if len(sent_buffer)>=max_buf_size:\n",
" random.shuffle(sent_buffer)\n",
" for sent in sent_buffer: \n",
" outfile.write('{}\\n'.format(sent))\n",
" sent_buffer.clear()\n",
" \n",
" if len(sent_buffer)>0:\n",
" random.shuffle(sent_buffer)\n",
" for sent in sent_buffer: \n",
" outfile.write('{}\\n'.format(sent))\n",
" sent_buffer.clear() \n",
" \n",
" print('Total: {}'.format(total))\n",
" print('Unique: {}'.format(unique))\n",
"\n",
"def extract_wikiextractor_file(infname, outfname, lang, \n",
" encoding='utf-8', delimiter=' ||| ', preprocess_fn=preprocess_sent):\n",
" \"\"\"\n",
" Extract text content into a content csv file from wikipedia article page. \n",
" The wikipedia article page is the output from `wikiextractor` [https://github.com/attardi/wikiextractor] \n",
" \n",
" \"\"\"\n",
" normalizer_factory=indic_normalize.IndicNormalizerFactory()\n",
" normalizer=normalizer_factory.get_normalizer(lang)\n",
" \n",
" with open(infname,'r',encoding=encoding) as infile, \\\n",
" open(outfname,'w',encoding=encoding) as outfile: \n",
" artid=-1\n",
" paraid=0\n",
" for line in infile:\n",
" if line.find('<doc')==0:\n",
" artid+=1\n",
" paraid=0\n",
" continue\n",
" if line.find('</doc')==0:\n",
" continue\n",
" if len(line.strip())>0:\n",
" for sentid, sent in enumerate(sent_split(line.strip(),lang)):\n",
" sent=sent.strip()\n",
" if sent!='':\n",
" sent = preprocess_fn(sent,lang,normalizer)\n",
" outfile.write(delimiter.join([str(artid), str(paraid), str(sentid), sent]) + '\\n')\n",
" paraid+=1\n",
"\n",
" \n",
"def extract_leipzig_corpus(infname,outfname,lang,encoding='utf-8'):\n",
" \"\"\"\n",
" Extractor for files form the Leipzig corpus\n",
" [http://wortschatz.uni-leipzig.de/en/download/]\n",
" \n",
" \"\"\"\n",
" normalizer_factory=indic_normalize.IndicNormalizerFactory()\n",
" normalizer=normalizer_factory.get_normalizer(lang) \n",
"\n",
" with open(infname,'r',encoding=encoding) as infile, \\\n",
" open(outfname,'w',encoding=encoding) as outfile: \n",
" for i, line in enumerate(infile):\n",
" outfile.write('0 ||| 0 ||| {} ||| {}\\n'.format(i,preprocess_sent(line,lang,normalizer))) \n",
" \n",
"def dataset_stats(fname):\n",
" \"\"\"\n",
" Extracts dataset statistics from the final extracted file. This input file contains\n",
" one sentence per line. The sentences are tokenized.\n",
" \"\"\"\n",
"\n",
" all_puncs=set(string.punctuation+'\\u0964\\u0965')\n",
" \n",
" sent_count=0\n",
" token_cnt=0\n",
" true_token_cnt=0\n",
" tokens=set()\n",
" \n",
" with open(fname,'r',encoding='utf-8') as infile:\n",
" for line in infile:\n",
" sent_count+=1\n",
" a=line.strip().split(' ')\n",
" token_cnt+=len(a)\n",
" b=list(filter(lambda x: x not in all_puncs,a))\n",
" true_token_cnt+=len(b)\n",
" tokens.update(b)\n",
" \n",
" print('== Stats ==')\n",
" print('Sent count: {}'.format(sent_count))\n",
" print('Token count: {}'.format(token_cnt))\n",
" print('True Token count: {}'.format(true_token_cnt))\n",
" print('Unique Token count: {}'.format(len(tokens)))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Marathi"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Wikipedia"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Wikipedia extraction commands using wikiextractor\n",
"\n",
"```\n",
"### This uses WikiExtractor (https://github.com/attardi/wikiextractor)\n",
"\n",
"x=/disk1/crawl_project/ta/wikipedia\n",
"mkdir $x\n",
"cd $x\n",
"wget https://dumps.wikimedia.org/tawiki/20190501/tawiki-20190501-pages-articles-multistream.xml.bz2\n",
"cd /disk1/src/wikiextractor\n",
"python3 WikiExtractor.py -cb 250k -o $x/extracted $x/tawiki-20190501-pages-articles-multistream.xml.bz2\n",
"cd -\n",
"find extracted -name '*bz2' -exec bunzip2 -c {} \\; > text.xml\n",
"rm text.xml\n",
"rm tawiki-20190501-pages-articles-multistream.xml.bz2\n",
"rm -rf extracted\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"mrwiki-20190401-pages-articles-multistream.xml.bz2\n",
"\n",
"INFO: Finished 1-process extraction of 53715 articles in 123.6s (434.7 art/s)\n",
"\n",
"INFO: total of page: 102025, total of articl page: 53715; total of used articl page: 53715"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Post-processing output generated by wikiextractor"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"## tex.xml is extracted as shown in commanfs above\n",
"extract_wikiextractor_file('text.xml',\n",
" 'content_fname1.csv',\n",
" 'mr')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Loksatta"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Extractor function for Marathi Loksatta page**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_article_contents_mr_loksatta(fname,lang,encoding='utf-8'):\n",
" with open(fname,'r',encoding=encoding) as infile: \n",
" soup = BeautifulSoup(infile)\n",
" for elem in soup.find_all('div'):\n",
" if 'itemprop' in elem.attrs and 'articleBody' in elem['itemprop']:\n",
" filtered_paras=list(filter(lambda x: x.name=='p' and len(x.attrs)==0,elem.children))\n",
" paraid=0\n",
" for blockid, block in enumerate(filtered_paras):\n",
"# print('Para: {}'.format(blockid))\n",
"# print(list(block.strings))\n",
" text=' '.join(block.strings)\n",
" if blockid==0 and text.find(':')>=0 and text.find(':')<20:\n",
" text=':'.join(text.split(':')[1:])\n",
" for para_text in text.split('\\n'): \n",
" for sentid, sent in enumerate(sent_split(para_text,lang)):\n",
" sent=sent.strip()\n",
" if sent!='':\n",
" # print('{}: {}'.format(sentid, sent))\n",
" yield((paraid,sentid,sent))\n",
" # yield((paraid,sentid,preprocess_sent(sent,'ml',normalizer)))\n",
" # print() \n",
" paraid+=1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Extracting data from crawled HTML files**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lang='mr'\n",
"posts_dir='directory_containing_crawled_html_pages'\n",
"content_fname='content_fname2.csv'\n",
"article_mapping_fname='article_mapping_fname'\n",
"get_article_contents=get_article_contents_mr_loksatta\n",
"narticles=-1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"write_corpus(\n",
" extract_all_content(posts_dir, lang, article_extract_fn=get_article_contents,narticles=narticles),\n",
" content_fname,\n",
" article_mapping_fname\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Aggregating all crawled data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"### aggregating, de-duplicating and shuffling all the data \n",
"dedup_shuffle_and_print_txt([ 'content_fname1.csv', 'content_fname2.csv' ], 'output_fname.txt' )\n",
"### extract dataset statistics\n",
"dataset_stats('output_fname.txt')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"toc": {
"base_numbering": 1,
"nav_menu": {
"height": "703px",
"width": "326px"
},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|