File size: 22,215 Bytes
ef23634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Pre-requisites\n",
    "\n",
    "- Python 3.5+\n",
    "- Python packages: \n",
    "    - `pip install bs4 pandas mmh3`\n",
    "- [Indic NLP Library](https://github.com/anoopkunchukuttan/indic_nlp_library)\n",
    "- [Indic NLP Resources](https://github.com/anoopkunchukuttan/indic_nlp_resources)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Initialize the Indic NLP Library\n",
    "\n",
    "Run the cell below to initialize the Indic NLP Library"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# The path to the local git repo for Indic NLP Library\n",
    "INDIC_NLP_LIB_HOME=\"/disk1/src/indic_nlp_library\"\n",
    "\n",
    "# The path to the local git repo for Indic NLP Resources\n",
    "INDIC_NLP_RESOURCES=\"/disk1/src/indic_nlp_resources\"\n",
    "\n",
    "import sys\n",
    "sys.path.append('{}/src'.format(INDIC_NLP_LIB_HOME))\n",
    "\n",
    "from indicnlp import common\n",
    "common.set_resources_path(INDIC_NLP_RESOURCES)\n",
    "\n",
    "from indicnlp import loader\n",
    "loader.load()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from bs4 import BeautifulSoup\n",
    "import os\n",
    "import string\n",
    "import indicnlp\n",
    "from indicnlp.tokenize import indic_tokenize\n",
    "from indicnlp.normalize import indic_normalize\n",
    "from indicnlp.transliterate import unicode_transliterate\n",
    "from indicnlp.tokenize import sentence_tokenize\n",
    "import re\n",
    "import collections\n",
    "import random\n",
    "import mmh3"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Common Functions"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def preprocess_sent(text,lang,normalizer):\n",
    "    \"\"\"\n",
    "        Pre-process text (normalization and tokenization)\n",
    "        \n",
    "        text: text string to preprocess\n",
    "        lang: language code (2-letter ISO code)\n",
    "        normalizer: normalizer object for language\n",
    "        \n",
    "        returns the processed text string\n",
    "    \"\"\"\n",
    "    return ' '.join(indic_tokenize.trivial_tokenize(normalizer.normalize(text.replace('\\n',' ')),lang)) \n",
    "\n",
    "def sent_split(text,lang):\n",
    "    \"\"\"\n",
    "        Sentence splitter\n",
    "        \n",
    "        text: text to sentence split \n",
    "        lang: language\n",
    "        \n",
    "        returns list of sentences \n",
    "    \"\"\"\n",
    "    return  sentence_tokenize.sentence_split(text,lang)\n",
    "\n",
    "def extract_all_content(indir,lang,\n",
    "                        article_extract_fn,\n",
    "                        preprocess_fn=preprocess_sent,\n",
    "                        narticles=-1,\n",
    "                        start_artid=0):\n",
    "    \"\"\"\n",
    "    This method reads all files from the input directory, extracts text content from each file,\n",
    "    and pre-processes the text. This method is a generator. \n",
    "    For each sentence, the method yields a tuple of the format: \n",
    "    \n",
    "    (artid, fname, paraid, sentid, processed_text)\n",
    "    \n",
    "    indir: path to input directoryo containing files to be parsed \n",
    "    \n",
    "    lang: language to the files in the input directory\n",
    "    \n",
    "    article_extract_fn: the function to extract text content from each file. \n",
    "        Signature of the function: get_article_contents(fname,lang,encoding) \n",
    "          `fname` is name of the file, `lang` is langcode, \n",
    "          `encoding` is text-encoding (default=utf-8). \n",
    "        The function yields a tuple (paraid, sentid, extracted_text) \n",
    "        for each  sentence.\n",
    "        \n",
    "    preprocess_fn: pre-processing function to apply to the extracted text. \n",
    "        The function takes a string as input and returns processed string as output.\n",
    "        \n",
    "    narticles: extract and process the first `narticles` from input directory. \n",
    "        if narticles=-1 (default), all files are extracted\n",
    "        \n",
    "    start_artid: the start of the article id to assign to extracted articles (default=0)\n",
    "    \n",
    "    \"\"\"\n",
    "\n",
    "    fnames = os.listdir(indir)\n",
    "    if narticles>0:\n",
    "        fnames=fnames[:narticles]\n",
    "    nsent=0\n",
    "\n",
    "    normalizer_factory=indic_normalize.IndicNormalizerFactory()\n",
    "    normalizer=normalizer_factory.get_normalizer(lang)\n",
    "             \n",
    "    print('Number of articles: {}'.format(len(fnames)))\n",
    "    for artid, fname in enumerate(fnames,start_artid):\n",
    "#         print(fname)\n",
    "        if artid%100 == 0:\n",
    "            print('({}|{})'.format(artid,nsent),end=' ... ')\n",
    "        \n",
    "        try:\n",
    "            fpath=os.sep.join([indir,fname])\n",
    "            for paraid, sentid, sent in article_extract_fn(fpath,lang):\n",
    "                nsent+=1\n",
    "                yield( ( artid, fname, paraid, sentid, preprocess_fn(sent,lang,normalizer) ) )\n",
    "        except:\n",
    "            print('Cannot parse {}'.format(fname))\n",
    "                \n",
    "def write_corpus(corpus_iterator,content_fname,article_mapping_fname,delimiter=' ||| ', encoding='utf-8'):\n",
    "    \"\"\"\n",
    "    Writes the extracted corpus to a file. The extracted data is organized in terms of articles, paragraphs \n",
    "    and sentences. The following is the format of the output file: \n",
    "        - one line per sentence\n",
    "        - format of line: article_id, para_id, sent_id, sentence\n",
    "    In addition to the content file mention, a metadata file which maps the article id to the filename is also written. \n",
    "    \n",
    "    corpus_iterator: iterator over the corpus, yielding tuple (artid, fname, paraid, sentid, processed_text). \n",
    "        The function `extract_all_content` yields a generator in this format. \n",
    "    content_fname: output content file to write the extracted data to in the format mentioned above\n",
    "    article_mapping_fname: output metadata file to write article id to filename mapping.\n",
    "    delimiter=' ||| ': delimiter for the content file. The default delimiter is the same \n",
    "                        as used in the Moses phrase table\n",
    "    encoding: text encoding default - 'utf-8'\n",
    "    \n",
    "    \"\"\"\n",
    "    \n",
    "    artid_name_mapping={}\n",
    "    with open(content_fname,'w',encoding=encoding) as contentfile:\n",
    "        for artid, fname, paraid, sentid, text in corpus_iterator:\n",
    "            contentfile.write(delimiter.join([str(artid), str(paraid), str(sentid), text]) + '\\n')\n",
    "            artid_name_mapping[artid]=fname\n",
    "\n",
    "    with open(article_mapping_fname,'w',encoding=encoding) as artmappingfile:\n",
    "        for artid, name in sorted(artid_name_mapping.items(),key=lambda x: x[0]):\n",
    "            artmappingfile.write('{} {} {}\\n'.format(artid,delimiter,name))\n",
    "\n",
    "def convert_txt_to_csv_format(infname, outfname, encoding='utf-8'):\n",
    "    \"\"\"\n",
    "    convert txt file to csv format. This method is used when the text file is directly available.\n",
    "    The input file has one sentence per line. Assumed to be preprocessed (tokenized, normalized)\n",
    "    \n",
    "    \"\"\"\n",
    "    with open(infname,'r',encoding=encoding) as infile, \\\n",
    "         open(outfname,'w',encoding=encoding) as outfile: \n",
    "        for i, line in enumerate(infile):\n",
    "            outfile.write('0 ||| 0 ||| {} ||| {}\\n'.format(i,line.strip()))\n",
    "            \n",
    "def preprocess_convert_txt_to_csv_format(infname, outfname, lang, encoding='utf-8'):\n",
    "    \"\"\"\n",
    "    Convert raw text file to csv format\n",
    "    \"\"\"\n",
    "    \n",
    "    normalizer_factory=indic_normalize.IndicNormalizerFactory()\n",
    "    normalizer=normalizer_factory.get_normalizer(lang)\n",
    "    \n",
    "    with open(infname,'r',encoding=encoding) as infile, \\\n",
    "         open(outfname,'w',encoding=encoding) as outfile: \n",
    "        i=0\n",
    "        for line in infile:\n",
    "            sents = sent_split(line.strip(),lang)\n",
    "            for sent in sents:\n",
    "                outfile.write('0 ||| 0 ||| {} ||| {}\\n'.format(i,\n",
    "                                                    preprocess_sent(sent.strip(), lang, normalizer)) )\n",
    "                i=i+1\n",
    "\n",
    "def print_txt(infnames, outfname, encoding='utf-8'):\n",
    "    \"\"\"\n",
    "    Extract only the text from the content csv file. The output file has one sentence per file.\n",
    "    \"\"\"\n",
    "    with open(outfname,'w',encoding=encoding) as outfile: \n",
    "        for infname in filter(lambda x: os.path.isfile(x),infnames):\n",
    "            with open(infname,'r',encoding=encoding) as infile:\n",
    "                for i, line in enumerate(infile):\n",
    "                    fields=line.strip().split('|||')\n",
    "                    if len(fields) >=4:\n",
    "                        outfile.write('{}\\n'.format(fields[3].strip()))\n",
    "                        \n",
    "# def dedup_and_print_txt(infnames, outfname, encoding='utf-8'):\n",
    "    \n",
    "#     total=0\n",
    "#     unique=0\n",
    "#     hash_codes=set()\n",
    "    \n",
    "#     with open(outfname,'w',encoding=encoding) as outfile: \n",
    "#         for infname in filter(lambda x: os.path.isfile(x),infnames):\n",
    "#             with open(infname,'r',encoding=encoding) as infile:\n",
    "#                 for i, line in enumerate(infile):\n",
    "#                     fields=line.strip().split('|||')\n",
    "#                     if len(fields) >=4:\n",
    "#                         sent=fields[3].strip()\n",
    "#                         total+=1\n",
    "#                         hs=hash(sent)\n",
    "#                         if hs not in hash_codes:\n",
    "#                             outfile.write('{}\\n'.format(sent))\n",
    "#                             hash_codes.add(hs)\n",
    "#                             unique+=1\n",
    "    \n",
    "#     print('Total: {}'.format(total))\n",
    "#     print('Unique: {}'.format(unique))\n",
    "\n",
    "def dedup_shuffle_and_print_txt(infnames, outfname, max_buf_size=100000,encoding='utf-8'):\n",
    "    \"\"\"\n",
    "    The method creates a sentence level corpora from multiple content csv files.\n",
    "    All sentences are extracted, they are de-duplicated using murmurhash and shuffled\n",
    "    before writing the entire corpus to the output file. The output file has one sentence per line.\n",
    "\n",
    "    \"\"\"\n",
    "    \n",
    "    total=0\n",
    "    unique=0\n",
    "    hash_codes=set()\n",
    "    sent_buffer=[]\n",
    "    \n",
    "    with open(outfname,'w',encoding=encoding) as outfile: \n",
    "        for infname in filter(lambda x: os.path.isfile(x),infnames):\n",
    "            print('Processing: {}'.format(infname))\n",
    "            with open(infname,'r',encoding=encoding) as infile:\n",
    "                for i, line in enumerate(infile):\n",
    "                    fields=line.strip().split('|||')\n",
    "                    if len(fields) >=4:\n",
    "                        sent=fields[3].strip()\n",
    "                        total+=1\n",
    "#                         hs=hash(sent)\n",
    "                        hs=mmh3.hash128(sent)\n",
    "                        if hs not in hash_codes:\n",
    "#                             outfile.write('{}\\n'.format(sent))\n",
    "                            sent_buffer.append(sent)\n",
    "                            hash_codes.add(hs)\n",
    "                            unique+=1\n",
    "                    if len(sent_buffer)>=max_buf_size:\n",
    "                        random.shuffle(sent_buffer)\n",
    "                        for sent in sent_buffer: \n",
    "                            outfile.write('{}\\n'.format(sent))\n",
    "                        sent_buffer.clear()\n",
    "                \n",
    "        if len(sent_buffer)>0:\n",
    "            random.shuffle(sent_buffer)\n",
    "            for sent in sent_buffer: \n",
    "                outfile.write('{}\\n'.format(sent))\n",
    "            sent_buffer.clear()                    \n",
    "                        \n",
    "    print('Total: {}'.format(total))\n",
    "    print('Unique: {}'.format(unique))\n",
    "\n",
    "def extract_wikiextractor_file(infname, outfname, lang, \n",
    "                               encoding='utf-8', delimiter=' ||| ', preprocess_fn=preprocess_sent):\n",
    "    \"\"\"\n",
    "    Extract text content into a content csv file from wikipedia article page. \n",
    "    The wikipedia article page is the output from `wikiextractor` [https://github.com/attardi/wikiextractor] \n",
    "    \n",
    "    \"\"\"\n",
    "    normalizer_factory=indic_normalize.IndicNormalizerFactory()\n",
    "    normalizer=normalizer_factory.get_normalizer(lang)\n",
    "    \n",
    "    with open(infname,'r',encoding=encoding) as infile, \\\n",
    "         open(outfname,'w',encoding=encoding) as outfile: \n",
    "        artid=-1\n",
    "        paraid=0\n",
    "        for line in infile:\n",
    "            if line.find('<doc')==0:\n",
    "                artid+=1\n",
    "                paraid=0\n",
    "                continue\n",
    "            if line.find('</doc')==0:\n",
    "                continue\n",
    "            if len(line.strip())>0:\n",
    "                for sentid, sent in enumerate(sent_split(line.strip(),lang)):\n",
    "                    sent=sent.strip()\n",
    "                    if sent!='':\n",
    "                        sent = preprocess_fn(sent,lang,normalizer)\n",
    "                        outfile.write(delimiter.join([str(artid), str(paraid), str(sentid), sent]) + '\\n')\n",
    "                paraid+=1\n",
    "\n",
    "                \n",
    "def extract_leipzig_corpus(infname,outfname,lang,encoding='utf-8'):\n",
    "    \"\"\"\n",
    "    Extractor for files form the Leipzig corpus\n",
    "    [http://wortschatz.uni-leipzig.de/en/download/]\n",
    "    \n",
    "    \"\"\"\n",
    "    normalizer_factory=indic_normalize.IndicNormalizerFactory()\n",
    "    normalizer=normalizer_factory.get_normalizer(lang)    \n",
    "\n",
    "    with open(infname,'r',encoding=encoding) as infile, \\\n",
    "         open(outfname,'w',encoding=encoding) as outfile: \n",
    "        for i, line in enumerate(infile):\n",
    "            outfile.write('0 ||| 0 ||| {} ||| {}\\n'.format(i,preprocess_sent(line,lang,normalizer)))                \n",
    "                \n",
    "def dataset_stats(fname):\n",
    "    \"\"\"\n",
    "    Extracts dataset statistics from the final extracted file. This input file contains\n",
    "    one sentence per line. The sentences are tokenized.\n",
    "    \"\"\"\n",
    "\n",
    "    all_puncs=set(string.punctuation+'\\u0964\\u0965')\n",
    "    \n",
    "    sent_count=0\n",
    "    token_cnt=0\n",
    "    true_token_cnt=0\n",
    "    tokens=set()\n",
    "    \n",
    "    with open(fname,'r',encoding='utf-8') as infile:\n",
    "        for line in infile:\n",
    "            sent_count+=1\n",
    "            a=line.strip().split(' ')\n",
    "            token_cnt+=len(a)\n",
    "            b=list(filter(lambda x: x not in all_puncs,a))\n",
    "            true_token_cnt+=len(b)\n",
    "            tokens.update(b)\n",
    "    \n",
    "    print('== Stats ==')\n",
    "    print('Sent count: {}'.format(sent_count))\n",
    "    print('Token count: {}'.format(token_cnt))\n",
    "    print('True Token count: {}'.format(true_token_cnt))\n",
    "    print('Unique Token count: {}'.format(len(tokens)))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Marathi"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Wikipedia"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Wikipedia extraction commands using wikiextractor\n",
    "\n",
    "```\n",
    "### This uses WikiExtractor (https://github.com/attardi/wikiextractor)\n",
    "\n",
    "x=/disk1/crawl_project/ta/wikipedia\n",
    "mkdir $x\n",
    "cd $x\n",
    "wget https://dumps.wikimedia.org/tawiki/20190501/tawiki-20190501-pages-articles-multistream.xml.bz2\n",
    "cd /disk1/src/wikiextractor\n",
    "python3 WikiExtractor.py -cb 250k -o $x/extracted $x/tawiki-20190501-pages-articles-multistream.xml.bz2\n",
    "cd -\n",
    "find extracted -name '*bz2' -exec bunzip2 -c {} \\; > text.xml\n",
    "rm text.xml\n",
    "rm tawiki-20190501-pages-articles-multistream.xml.bz2\n",
    "rm -rf extracted\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "mrwiki-20190401-pages-articles-multistream.xml.bz2\n",
    "\n",
    "INFO: Finished 1-process extraction of 53715 articles in 123.6s (434.7 art/s)\n",
    "\n",
    "INFO: total of page: 102025, total of articl page: 53715; total of used articl page: 53715"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Post-processing output generated by wikiextractor"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "## tex.xml is extracted as shown in commanfs above\n",
    "extract_wikiextractor_file('text.xml',\n",
    "                           'content_fname1.csv',\n",
    "                           'mr')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Loksatta"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Extractor function for Marathi Loksatta page**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_article_contents_mr_loksatta(fname,lang,encoding='utf-8'):\n",
    "    with open(fname,'r',encoding=encoding) as infile: \n",
    "        soup = BeautifulSoup(infile)\n",
    "        for elem in soup.find_all('div'):\n",
    "            if 'itemprop' in elem.attrs and 'articleBody' in elem['itemprop']:\n",
    "                filtered_paras=list(filter(lambda x: x.name=='p' and len(x.attrs)==0,elem.children))\n",
    "                paraid=0\n",
    "                for blockid, block in enumerate(filtered_paras):\n",
    "#                     print('Para: {}'.format(blockid))\n",
    "#                     print(list(block.strings))\n",
    "                    text=' '.join(block.strings)\n",
    "                    if blockid==0 and text.find(':')>=0 and text.find(':')<20:\n",
    "                        text=':'.join(text.split(':')[1:])\n",
    "                    for para_text in text.split('\\n'): \n",
    "                        for sentid, sent in enumerate(sent_split(para_text,lang)):\n",
    "                            sent=sent.strip()\n",
    "                            if sent!='':\n",
    "    #                             print('{}: {}'.format(sentid, sent))\n",
    "                                yield((paraid,sentid,sent))\n",
    "    #                             yield((paraid,sentid,preprocess_sent(sent,'ml',normalizer)))\n",
    "    #                     print()   \n",
    "                        paraid+=1"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Extracting data from crawled HTML files**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "lang='mr'\n",
    "posts_dir='directory_containing_crawled_html_pages'\n",
    "content_fname='content_fname2.csv'\n",
    "article_mapping_fname='article_mapping_fname'\n",
    "get_article_contents=get_article_contents_mr_loksatta\n",
    "narticles=-1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "write_corpus(\n",
    "             extract_all_content(posts_dir, lang, article_extract_fn=get_article_contents,narticles=narticles),\n",
    "             content_fname,\n",
    "             article_mapping_fname\n",
    "            )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Aggregating all crawled data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "### aggregating, de-duplicating and shuffling all the data \n",
    "dedup_shuffle_and_print_txt([ 'content_fname1.csv', 'content_fname2.csv'  ],  'output_fname.txt' )\n",
    "### extract dataset statistics\n",
    "dataset_stats('output_fname.txt')"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.7"
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {
    "height": "703px",
    "width": "326px"
   },
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": false,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {},
   "toc_section_display": true,
   "toc_window_display": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}