huph22 commited on
Commit
833a847
·
verified ·
1 Parent(s): 4eaf202
Files changed (1) hide show
  1. app.py +18 -57
app.py CHANGED
@@ -1,64 +1,25 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
2
+ import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
+ tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
5
+ model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
 
 
 
6
 
7
+ def classify_text(text):
8
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
9
+ with torch.no_grad():
10
+ outputs = model(**inputs)
11
+ logits = outputs.logits
12
+ predicted_class = torch.argmax(logits, dim=1).item()
13
+ return f"Predicted class: {predicted_class}"
 
 
 
 
 
 
 
 
14
 
15
+ import gradio as gr
16
 
17
+ interface = gr.Interface(
18
+ fn=classify_text,
19
+ inputs="text",
20
+ outputs="text",
21
+ title="BERT Text Classifier"
 
 
 
 
 
 
 
 
 
 
 
 
22
  )
23
 
24
+ interface.launch()
25