martin-gorner commited on
Commit
40912b5
·
1 Parent(s): d78f59f

three additional 1B to 3B params models

Browse files
Files changed (4) hide show
  1. app.py +13 -2
  2. img/llama2.png +0 -0
  3. img/meta.png +0 -0
  4. models.py +18 -10
app.py CHANGED
@@ -1,5 +1,16 @@
1
  import os
2
 
 
 
 
 
 
 
 
 
 
 
 
3
  os.environ["KERAS_BACKEND"] = "jax"
4
 
5
  import gradio as gr
@@ -95,7 +106,7 @@ def bot_icon_select(model_name):
95
  if "gemma" in model_name:
96
  return "img/gemma.png"
97
  elif "llama" in model_name:
98
- return "img/llama.png"
99
  elif "vicuna" in model_name:
100
  return "img/vicuna.png"
101
  elif "mistral" in model_name:
@@ -167,7 +178,7 @@ with gr.Blocks(fill_width=True, title="Keras demo") as demo:
167
  show_fullscreen_button=False,
168
  show_share_button=False,
169
  interactive=False,
170
- scale=0.01,
171
  container=False,
172
  )
173
  gr.HTML(
 
1
  import os
2
 
3
+ # Questions for Gradio
4
+ # - Chat share button is enabled by default but thrown an error when clicked.
5
+ # - How to add local images in HTML? (https://github.com/gradio-app/gradio/issues/884)
6
+ # - How to allow Chatbot to fill the vertical space? (https://github.com/gradio-app/gradio/issues/4001)
7
+ # TODO:
8
+ # - Add the 1MB models, keras/gemma_1.1_instruct_7b_en
9
+ # - Add retry button, for each model individually
10
+ # - Add ability to route a message to a single model only.
11
+ # - log_applied_layout_map: make it work for Llama3CausalLM and LlamaCausalLM (vicuna)
12
+ # - display context length
13
+
14
  os.environ["KERAS_BACKEND"] = "jax"
15
 
16
  import gradio as gr
 
106
  if "gemma" in model_name:
107
  return "img/gemma.png"
108
  elif "llama" in model_name:
109
+ return "img/meta.png"
110
  elif "vicuna" in model_name:
111
  return "img/vicuna.png"
112
  elif "mistral" in model_name:
 
178
  show_fullscreen_button=False,
179
  show_share_button=False,
180
  interactive=False,
181
+ scale=0,
182
  container=False,
183
  )
184
  gr.HTML(
img/llama2.png ADDED
img/meta.png ADDED
models.py CHANGED
@@ -2,11 +2,17 @@ import keras
2
  import keras_hub
3
 
4
  model_presets = [
 
5
  "hf://google/gemma-2-instruct-9b-keras",
6
  "hf://meta-llama/Llama-3.1-8B-Instruct",
7
  "hf://google/codegemma-7b-it-keras",
8
  "hf://keras/mistral_instruct_7b_en",
9
  "hf://keras/vicuna_1.5_7b_en",
 
 
 
 
 
10
  ]
11
 
12
  model_labels = map(lambda s: s.removeprefix("hf://"), model_presets)
@@ -33,18 +39,27 @@ def get_default_layout_map(preset_name, device_mesh):
33
  or "mistral" in preset_name
34
  or "vicuna" in preset_name
35
  ):
36
- return keras_hub.models.Llama3Backbone.get_layout_map(device_mesh)
 
 
 
37
  elif "gemma" in preset_name:
38
  return keras_hub.models.GemmaBackbone.get_layout_map(device_mesh)
39
 
40
 
41
  def log_applied_layout_map(model):
 
 
42
  if "Gemma" in type(model).__name__:
43
  transformer_decoder_block_name = "decoder_block_1"
44
- else: # works for Llama, Mistral, Vicuna
 
 
45
  transformer_decoder_block_name = "transformer_layer_1"
 
 
 
46
 
47
- print("Model class:", type(model).__name__)
48
  # See how layer sharding was applied
49
  embedding_layer = model.backbone.get_layer("token_embedding")
50
  print(embedding_layer)
@@ -96,10 +111,3 @@ def load_model(preset):
96
 
97
  log_applied_layout_map(model)
98
  return model
99
-
100
-
101
- # Some small models too
102
- # model1 = keras_hub.models.CausalLM.from_preset("hf://meta-llama/Llama-3.2-1B-Instruct", dtype="bfloat16")
103
- # model2 = keras_hub.models.CausalLM.from_preset("hf://google/gemma-2b-it-keras", dtype="bfloat16")
104
- # model3 = keras_hub.models.CausalLM.from_preset("hf://meta-llama/Llama-3.2-3B-Instruct", dtype="bfloat16")
105
- # keras/gemma_1.1_instruct_7b_en
 
2
  import keras_hub
3
 
4
  model_presets = [
5
+ # 8B params models
6
  "hf://google/gemma-2-instruct-9b-keras",
7
  "hf://meta-llama/Llama-3.1-8B-Instruct",
8
  "hf://google/codegemma-7b-it-keras",
9
  "hf://keras/mistral_instruct_7b_en",
10
  "hf://keras/vicuna_1.5_7b_en",
11
+ # "keras/gemma_1.1_instruct_7b_en", # won't fit?
12
+ # 1-3B params models
13
+ "hf://meta-llama/Llama-3.2-1B-Instruct",
14
+ "hf://google/gemma-2b-it-keras",
15
+ "hf://meta-llama/Llama-3.2-3B-Instruct",
16
  ]
17
 
18
  model_labels = map(lambda s: s.removeprefix("hf://"), model_presets)
 
39
  or "mistral" in preset_name
40
  or "vicuna" in preset_name
41
  ):
42
+ layout_map = keras_hub.models.Llama3Backbone.get_layout_map(device_mesh)
43
+ # This line is missing for some Llama models (TODO: fix this in keras_hub)
44
+ layout_map["token_embedding/reverse_embeddings"] = ("batch", "model")
45
+ return layout_map
46
  elif "gemma" in preset_name:
47
  return keras_hub.models.GemmaBackbone.get_layout_map(device_mesh)
48
 
49
 
50
  def log_applied_layout_map(model):
51
+ print("Model class:", type(model).__name__)
52
+
53
  if "Gemma" in type(model).__name__:
54
  transformer_decoder_block_name = "decoder_block_1"
55
+ elif "Llama" in type(model).__name__: # works for Llama (Vicuna) and Llama3
56
+ transformer_decoder_block_name = "transformer_layer_1"
57
+ elif "Mistral" in type(model).__name__:
58
  transformer_decoder_block_name = "transformer_layer_1"
59
+ else:
60
+ print("Unknown architecture. Cannot display the applied layout.")
61
+ return
62
 
 
63
  # See how layer sharding was applied
64
  embedding_layer = model.backbone.get_layer("token_embedding")
65
  print(embedding_layer)
 
111
 
112
  log_applied_layout_map(model)
113
  return model