from pathlib import Path import time import os from contextlib import contextmanager import random import numpy as np import audiotools as at from audiotools import AudioSignal import argbind import shutil import torch import yaml from vampnet.interface import Interface, signal_concat from vampnet import mask as pmask from ttutil import log # TODO: incorporate discord bot (if mem allows) # in a separate thread, send audio samples for listening # and send back the results # as well as the params for sampling # also a command that lets you clear the current signal # if you want to start over device = "cuda" if torch.cuda.is_available() else "cpu" VAMPNET_DIR = Path(".").resolve() @contextmanager def chdir(path): old_dir = os.getcwd() os.chdir(path) try: yield finally: os.chdir(old_dir) def load_interface(model_choice="default") -> Interface: with chdir(VAMPNET_DIR): # populate the model choices with any interface.yml files in the generated confs MODEL_CHOICES = { "default": { "Interface.coarse_ckpt": "models/vampnet/coarse.pth", "Interface.coarse2fine_ckpt": "models/vampnet/c2f.pth", "Interface.codec_ckpt": "models/vampnet/codec.pth", } } generated_confs = Path("conf/generated") for conf_file in generated_confs.glob("*/interface.yml"): with open(conf_file) as f: _conf = yaml.safe_load(f) # check if the coarse, c2f, and codec ckpts exist # otherwise, dont' add this model choice if not ( Path(_conf["Interface.coarse_ckpt"]).exists() and Path(_conf["Interface.coarse2fine_ckpt"]).exists() and Path(_conf["Interface.codec_ckpt"]).exists() ): continue MODEL_CHOICES[conf_file.parent.name] = _conf interface = Interface( device=device, coarse_ckpt=MODEL_CHOICES[model_choice]["Interface.coarse_ckpt"], coarse2fine_ckpt=MODEL_CHOICES[model_choice]["Interface.coarse2fine_ckpt"], codec_ckpt=MODEL_CHOICES[model_choice]["Interface.codec_ckpt"], ) interface.model_choices = MODEL_CHOICES interface.to("cuda" if torch.cuda.is_available() else "cpu") return interface def load_model(interface: Interface, model_choice: str): interface.reload( interface.model_choices[model_choice]["Interface.coarse_ckpt"], interface.model_choices[model_choice]["Interface.coarse2fine_ckpt"], ) def ez_variation( interface, sig: AudioSignal, seed: int = None, model_choice: str = None, ): t0 = time.time() if seed is None: seed = int(torch.randint(0, 2**32, (1,)).item()) at.util.seed(seed) # reload the model if necessary if model_choice is not None: load_model(interface, model_choice) # SAMPLING MASK PARAMS, hard code for now, we'll prob want a more preset-ey thing for the actual thin # we probably honestly just want to oscillate between the same 4 presets # in a predictable order such that they have a predictable outcome periodic_p = random.choice([3]) n_mask_codebooks = 3 sampletemp = random.choice([1.0,]) dropout = random.choice([0.0, 0.0]) top_p = None # NOTE: top p may be the culprit behind the collapse into single pitches. # parameters for the build_mask function build_mask_kwargs = dict( rand_mask_intensity=1.0, prefix_s=0.0, suffix_s=0.0, periodic_prompt=int(periodic_p), periodic_prompt2=int(periodic_p), periodic_prompt_width=1, _dropout=dropout, upper_codebook_mask=int(n_mask_codebooks), upper_codebook_mask_2=int(n_mask_codebooks), ) # parameters for the vamp function vamp_kwargs = dict( temperature=sampletemp, typical_filtering=True, typical_mass=0.15, typical_min_tokens=64, top_p=top_p, seed=seed, sample_cutoff=1.0, ) # save the mask as a txt file interface.set_chunk_size(10.0) sig, mask, codes = interface.vamp( sig, batch_size=1, feedback_steps=1, time_stretch_factor=1, build_mask_kwargs=build_mask_kwargs, vamp_kwargs=vamp_kwargs, return_mask=True, ) log(f"vamp took {time.time() - t0} seconds") return sig def main(): import tqdm interface = load_interface() sig = AudioSignal.excerpt("assets/example.wav", duration=7.0) sig = interface.preprocess(sig) sig.write('ttout/in.wav') insig = sig.clone() fdbk_every = 4 fdbk = 0.5 for i in tqdm.tqdm(range(1000)): sig = ez_variation(interface, sig, model_choice="orchestral") sig.write(f'ttout/out{i}.wav') if __name__ == "__main__": main()