vampnet-choir / app.py
hugggof's picture
Update app.py
b88d0ca verified
import spaces
from pathlib import Path
import yaml
import time
import uuid
import numpy as np
import audiotools as at
import argbind
import shutil
import torch
from datetime import datetime
import gradio as gr
from vampnet.interface import Interface, signal_concat
from vampnet import mask as pmask
device = "cuda" if torch.cuda.is_available() else "cpu"
interface = Interface.default()
init_model_choice = open("DEFAULT_MODEL").read().strip()
# load the init model
interface.load_finetuned(init_model_choice)
def to_output(sig):
return sig.sample_rate, sig.cpu().detach().numpy()[0][0]
MAX_DURATION_S = 10
def load_audio(file):
print(file)
if isinstance(file, str):
filepath = file
elif isinstance(file, tuple):
# not a file
sr, samples = file
samples = samples / np.iinfo(samples.dtype).max
return sr, samples
else:
filepath = file.name
sig = at.AudioSignal.salient_excerpt(
filepath, duration=MAX_DURATION_S
)
sig = at.AudioSignal(filepath)
return to_output(sig)
def load_example_audio():
return load_audio("./assets/example.wav")
from torch_pitch_shift import pitch_shift, get_fast_shifts
def shift_pitch(signal, interval: int):
signal.samples = pitch_shift(
signal.samples,
shift=interval,
sample_rate=signal.sample_rate
)
return signal
@spaces.GPU
def _vamp(
seed, input_audio, model_choice,
pitch_shift_amt, periodic_p,
n_mask_codebooks, periodic_w, onset_mask_width,
dropout, sampletemp, typical_filtering,
typical_mass, typical_min_tokens, top_p,
sample_cutoff, stretch_factor, api=False
):
t0 = time.time()
interface.to("cuda" if torch.cuda.is_available() else "cpu")
print(f"using device {interface.device}")
_seed = seed if seed > 0 else None
if _seed is None:
_seed = int(torch.randint(0, 2**32, (1,)).item())
at.util.seed(_seed)
sr, input_audio = input_audio
input_audio = input_audio / np.iinfo(input_audio.dtype).max
sig = at.AudioSignal(input_audio, sr)
# reload the model if necessary
interface.load_finetuned(model_choice)
if pitch_shift_amt != 0:
sig = shift_pitch(sig, pitch_shift_amt)
codes = interface.encode(sig)
mask = interface.build_mask(
codes, sig,
rand_mask_intensity=1.0,
prefix_s=0.0,
suffix_s=0.0,
periodic_prompt=int(periodic_p),
periodic_prompt_width=periodic_w,
onset_mask_width=onset_mask_width,
_dropout=dropout,
upper_codebook_mask=int(n_mask_codebooks),
)
# save the mask as a txt file
interface.set_chunk_size(10.0)
codes, mask = interface.vamp(
codes, mask,
batch_size=1 if api else 1,
feedback_steps=1,
_sampling_steps=12 if sig.duration <6.0 else 24,
time_stretch_factor=stretch_factor,
return_mask=True,
temperature=sampletemp,
typical_filtering=typical_filtering,
typical_mass=typical_mass,
typical_min_tokens=typical_min_tokens,
top_p=None,
seed=_seed,
sample_cutoff=1.0,
)
print(f"vamp took {time.time() - t0} seconds")
sig = interface.decode(codes)
return to_output(sig)
def vamp(data):
return _vamp(
seed=data[seed],
input_audio=data[input_audio],
model_choice=data[model_choice],
pitch_shift_amt=data[pitch_shift_amt],
periodic_p=data[periodic_p],
n_mask_codebooks=data[n_mask_codebooks],
periodic_w=data[periodic_w],
onset_mask_width=data[onset_mask_width],
dropout=data[dropout],
sampletemp=data[sampletemp],
typical_filtering=data[typical_filtering],
typical_mass=data[typical_mass],
typical_min_tokens=data[typical_min_tokens],
top_p=data[top_p],
sample_cutoff=data[sample_cutoff],
stretch_factor=data[stretch_factor],
api=False,
)
def api_vamp(data):
return _vamp(
seed=data[seed],
input_audio=data[input_audio],
model_choice=data[model_choice],
pitch_shift_amt=data[pitch_shift_amt],
periodic_p=data[periodic_p],
n_mask_codebooks=data[n_mask_codebooks],
periodic_w=data[periodic_w],
onset_mask_width=data[onset_mask_width],
dropout=data[dropout],
sampletemp=data[sampletemp],
typical_filtering=data[typical_filtering],
typical_mass=data[typical_mass],
typical_min_tokens=data[typical_min_tokens],
top_p=data[top_p],
sample_cutoff=data[sample_cutoff],
stretch_factor=data[stretch_factor],
api=True,
)
OUT_DIR = Path("gradio-outputs")
OUT_DIR.mkdir(exist_ok=True)
def harp_vamp(input_audio_file, periodic_p, n_mask_codebooks):
sig = at.AudioSignal(input_audio_file)
sr, samples = sig.sample_rate, sig.samples[0][0].detach().cpu().numpy()
# convert to int32
samples = (samples * np.iinfo(np.int32).max).astype(np.int32)
sr, samples = _vamp(
seed=0,
input_audio=(sr, samples),
model_choice=init_model_choice,
pitch_shift_amt=0,
periodic_p=periodic_p,
n_mask_codebooks=n_mask_codebooks,
periodic_w=1,
onset_mask_width=0,
dropout=0.0,
sampletemp=1.0,
typical_filtering=True,
typical_mass=0.15,
typical_min_tokens=64,
top_p=0.0,
sample_cutoff=1.0,
stretch_factor=1,
)
sig = at.AudioSignal(samples, sr)
# write to file
# clear the outdir
for p in OUT_DIR.glob("*"):
p.unlink()
OUT_DIR.mkdir(exist_ok=True)
outpath = OUT_DIR / f"{uuid.uuid4()}.wav"
sig.write(outpath)
from pyharp import AudioLabel, LabelList
output_labels = LabelList()
output_labels.append(AudioLabel(label='~', t=0.0, amplitude=0.5, description='generated audio'))
return outpath, output_labels
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
manual_audio_upload = gr.File(
label=f"upload some audio (will be randomly trimmed to max of 100s)",
file_types=["audio"]
)
load_example_audio_button = gr.Button("or load example audio")
input_audio = gr.Audio(
label="input audio",
interactive=False,
type="numpy",
)
audio_mask = gr.Audio(
label="audio mask (listen to this to hear the mask hints)",
interactive=False,
type="numpy",
)
# connect widgets
load_example_audio_button.click(
fn=load_example_audio,
inputs=[],
outputs=[ input_audio]
)
manual_audio_upload.change(
fn=load_audio,
inputs=[manual_audio_upload],
outputs=[ input_audio]
)
# mask settings
with gr.Column():
with gr.Accordion("manual controls", open=True):
periodic_p = gr.Slider(
label="periodic prompt",
minimum=0,
maximum=13,
step=1,
value=7,
)
onset_mask_width = gr.Slider(
label="onset mask width (multiplies with the periodic mask, 1 step ~= 10milliseconds) ",
minimum=0,
maximum=100,
step=1,
value=0, visible=False
)
n_mask_codebooks = gr.Slider(
label="compression prompt ",
value=3,
minimum=1,
maximum=14,
step=1,
)
maskimg = gr.Image(
label="mask image",
interactive=False,
type="filepath"
)
with gr.Accordion("extras ", open=False):
pitch_shift_amt = gr.Slider(
label="pitch shift amount (semitones)",
minimum=-12,
maximum=12,
step=1,
value=0,
)
stretch_factor = gr.Slider(
label="time stretch factor",
minimum=0,
maximum=8,
step=1,
value=1,
)
periodic_w = gr.Slider(
label="periodic prompt width (steps, 1 step ~= 10milliseconds)",
minimum=1,
maximum=20,
step=1,
value=1,
)
with gr.Accordion("sampling settings", open=False):
sampletemp = gr.Slider(
label="sample temperature",
minimum=0.1,
maximum=10.0,
value=1.0,
step=0.001
)
top_p = gr.Slider(
label="top p (0.0 = off)",
minimum=0.0,
maximum=1.0,
value=0.0
)
typical_filtering = gr.Checkbox(
label="typical filtering ",
value=True
)
typical_mass = gr.Slider(
label="typical mass (should probably stay between 0.1 and 0.5)",
minimum=0.01,
maximum=0.99,
value=0.15
)
typical_min_tokens = gr.Slider(
label="typical min tokens (should probably stay between 1 and 256)",
minimum=1,
maximum=256,
step=1,
value=64
)
sample_cutoff = gr.Slider(
label="sample cutoff",
minimum=0.0,
maximum=0.9,
value=1.0,
step=0.01
)
dropout = gr.Slider(
label="mask dropout",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.0
)
seed = gr.Number(
label="seed (0 for random)",
value=0,
precision=0,
)
# mask settings
with gr.Column():
model_choice = gr.Dropdown(
label="model choice",
choices=list(interface.available_models()),
value=init_model_choice,
visible=True
)
vamp_button = gr.Button("generate (vamp)!!!")
audio_outs = []
use_as_input_btns = []
for i in range(1):
with gr.Column():
audio_outs.append(gr.Audio(
label=f"output audio {i+1}",
interactive=False,
type="numpy"
))
use_as_input_btns.append(
gr.Button(f"use as input (feedback)")
)
thank_you = gr.Markdown("")
# download all the outputs
# download = gr.File(type="filepath", label="download outputs")
_inputs = {
input_audio,
sampletemp,
top_p,
periodic_p, periodic_w,
dropout,
stretch_factor,
onset_mask_width,
typical_filtering,
typical_mass,
typical_min_tokens,
seed,
model_choice,
n_mask_codebooks,
pitch_shift_amt,
sample_cutoff,
}
# connect widgets
vamp_button.click(
fn=vamp,
inputs=_inputs,
outputs=[audio_outs[0]],
)
api_vamp_button = gr.Button("api vamp", visible=True)
api_vamp_button.click(
fn=api_vamp,
inputs=_inputs,
outputs=[audio_outs[0]],
api_name="vamp"
)
from pyharp import ModelCard, build_endpoint
card = ModelCard(
name="vampnet",
description="vampnet! is a model for generating audio from audio",
author="hugo flores garcía",
tags=["music generation"],
midi_in=False,
midi_out=False
)
# Build a HARP-compatible endpoint
app = build_endpoint(model_card=card,
components=[
periodic_p,
n_mask_codebooks,
],
process_fn=harp_vamp)
try:
demo.queue()
demo.launch(share=True)
except KeyboardInterrupt:
shutil.rmtree("gradio-outputs", ignore_errors=True)
raise