Spaces:
Runtime error
Runtime error
Ceyda Cinarel
commited on
Commit
·
47cfe13
1
Parent(s):
cb5f8d1
make demo prettier half way there
Browse files- .gitattributes +1 -0
- app.py +68 -25
- assets/impact.ttf +0 -0
- assets/latent_walks/regular_walk.mp4 +3 -0
- assets/latent_walks/walk_cute.mp4 +3 -0
- assets/latent_walks/walk_happyrock.mp4 +3 -0
- assets/mosaic_bg.png +0 -0
- assets/outputs/example_output.jpg +0 -0
- assets/outputs/output2.jpg +0 -0
- assets/pigeon_meme.jpg +0 -0
- assets/pigeon_meme_orig.jpg +0 -0
- demo.py +70 -9
- requirements.txt +3 -1
.gitattributes
CHANGED
@@ -27,3 +27,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
27 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
28 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
29 |
*.faiss filter=lfs diff=lfs merge=lfs -text
|
|
|
|
27 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
28 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
29 |
*.faiss filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -1,22 +1,25 @@
|
|
|
|
1 |
import re
|
2 |
import streamlit as st # HF spaces at v1.2.0
|
3 |
-
from demo import load_model,generate,get_dataset,embed
|
4 |
-
|
|
|
5 |
# TODOs
|
6 |
# Add markdown short readme project intro
|
7 |
|
8 |
|
9 |
-
st.sidebar.
|
|
|
|
|
10 |
st.header("ButterflyGAN")
|
11 |
-
|
12 |
-
st.write("Demo prep still in progress!!")
|
13 |
|
14 |
|
15 |
@st.experimental_singleton
|
16 |
-
def load_model_intocache(model_name):
|
17 |
-
|
18 |
# model_name='ceyda/butterfly_512_base'
|
19 |
-
gan = load_model(model_name)
|
20 |
return gan
|
21 |
|
22 |
@st.experimental_singleton
|
@@ -25,33 +28,46 @@ def load_dataset():
|
|
25 |
return dataset
|
26 |
|
27 |
model_name='ceyda/butterfly_cropped_uniq1K_512'
|
28 |
-
|
|
|
|
|
29 |
dataset=load_dataset()
|
30 |
|
31 |
-
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
|
|
|
35 |
|
36 |
-
|
37 |
-
if 'ims' not in st.session_state:
|
38 |
-
st.session_state['ims'] = None
|
39 |
-
|
40 |
-
ims=st.session_state["ims"]
|
41 |
batch_size=4 #generate 4 butterflies
|
|
|
42 |
def run():
|
43 |
with st.spinner("Generating..."):
|
44 |
ims=generate(model,batch_size)
|
45 |
st.session_state['ims'] = ims
|
46 |
-
|
|
|
|
|
|
|
|
|
47 |
runb=st.button("Generate", on_click=run)
|
48 |
if ims is not None:
|
49 |
-
cols=st.columns(
|
50 |
picks=[False]*batch_size
|
51 |
-
for
|
|
|
52 |
cols[i].image(im)
|
53 |
-
picks[
|
54 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
# scores, retrieved_examples=dataset.get_nearest_examples('beit_embeddings', embed(im), k=5)
|
56 |
# for r in retrieved_examples["image"]:
|
57 |
# st.image(r)
|
@@ -66,13 +82,40 @@ if screen == "Make butterflies":
|
|
66 |
|
67 |
st.write(f"Latent dimension: {model.latent_dim}, Image size:{model.image_size}")
|
68 |
|
69 |
-
elif screen ==
|
70 |
-
st.write("Take a latent walk")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
st.markdown("Todo add explanation about data")
|
74 |
st.image("assets/training_data_lowres.png")
|
75 |
|
76 |
|
77 |
# footer stuff
|
78 |
-
st.sidebar.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydoc import ModuleScanner
|
2 |
import re
|
3 |
import streamlit as st # HF spaces at v1.2.0
|
4 |
+
from demo import load_model,generate,get_dataset,embed,make_meme
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
# TODOs
|
8 |
# Add markdown short readme project intro
|
9 |
|
10 |
|
11 |
+
st.sidebar.subheader("This butterfly does not exist! ")
|
12 |
+
st.sidebar.image("assets/logo.png", width=200)
|
13 |
+
|
14 |
st.header("ButterflyGAN")
|
15 |
+
|
16 |
+
st.write("Demo prep still in progress!! Come back later")
|
17 |
|
18 |
|
19 |
@st.experimental_singleton
|
20 |
+
def load_model_intocache(model_name,model_version):
|
|
|
21 |
# model_name='ceyda/butterfly_512_base'
|
22 |
+
gan = load_model(model_name,model_version)
|
23 |
return gan
|
24 |
|
25 |
@st.experimental_singleton
|
|
|
28 |
return dataset
|
29 |
|
30 |
model_name='ceyda/butterfly_cropped_uniq1K_512'
|
31 |
+
# model_version='0edac54b81958b82ce9fd5c1f688c33ac8e4f223'
|
32 |
+
model_version=None ##TBD
|
33 |
+
model=load_model_intocache(model_name,model_version)
|
34 |
dataset=load_dataset()
|
35 |
|
36 |
+
generate_menu="🦋 Make butterflies"
|
37 |
+
latent_walk_menu="🎧 Take a latent walk"
|
38 |
+
make_meme_menu="🐦 Make a meme"
|
39 |
+
mosaic_menu="👀 See the mosaic"
|
40 |
|
41 |
+
screen = st.sidebar.radio("Pick a destination",[generate_menu,latent_walk_menu,make_meme_menu,mosaic_menu])
|
42 |
|
43 |
+
if screen == generate_menu:
|
44 |
|
|
|
|
|
|
|
|
|
|
|
45 |
batch_size=4 #generate 4 butterflies
|
46 |
+
col_num=4
|
47 |
def run():
|
48 |
with st.spinner("Generating..."):
|
49 |
ims=generate(model,batch_size)
|
50 |
st.session_state['ims'] = ims
|
51 |
+
if 'ims' not in st.session_state:
|
52 |
+
st.session_state['ims'] = None
|
53 |
+
run()
|
54 |
+
ims=st.session_state["ims"]
|
55 |
+
|
56 |
runb=st.button("Generate", on_click=run)
|
57 |
if ims is not None:
|
58 |
+
cols=st.columns(col_num)
|
59 |
picks=[False]*batch_size
|
60 |
+
for j,im in enumerate(ims):
|
61 |
+
i=j%col_num
|
62 |
cols[i].image(im)
|
63 |
+
picks[j]=cols[i].button("Find Nearest",key="pick_"+str(j))
|
64 |
+
# meme_it=cols[i].button("What is this?",key="meme_"+str(j))
|
65 |
+
# if meme_it:
|
66 |
+
# no_bg=st.checkbox("Remove background?",True)
|
67 |
+
# meme_text=st.text_input("Meme text","Is this a pigeon?")
|
68 |
+
# meme=make_meme(im,text=meme_text,show_text=True,remove_background=no_bg)
|
69 |
+
# st.image(meme)
|
70 |
+
# if picks[j]:
|
71 |
# scores, retrieved_examples=dataset.get_nearest_examples('beit_embeddings', embed(im), k=5)
|
72 |
# for r in retrieved_examples["image"]:
|
73 |
# st.image(r)
|
|
|
82 |
|
83 |
st.write(f"Latent dimension: {model.latent_dim}, Image size:{model.image_size}")
|
84 |
|
85 |
+
elif screen == latent_walk_menu:
|
86 |
+
st.write("Take a latent walk :musical_note:")
|
87 |
+
|
88 |
+
cols=st.columns(3)
|
89 |
+
|
90 |
+
cols[0].video("assets/latent_walks/regular_walk.mp4")
|
91 |
+
cols[0].caption("Regular walk")
|
92 |
+
cols[1].video("assets/latent_walks/walk_happyrock.mp4")
|
93 |
+
cols[1].caption("walk with music :butterfly:")
|
94 |
+
cols[2].video("assets/latent_walks/walk_cute.mp4")
|
95 |
+
cols[2].caption(":musical_note: walk with cute butterflies")
|
96 |
+
cols[1].caption("Royalty Free Music from Bensound")
|
97 |
|
98 |
+
|
99 |
+
elif screen == make_meme_menu:
|
100 |
+
im = generate(model,1)[0]
|
101 |
+
no_bg=st.checkbox("Remove background?",True)
|
102 |
+
meme_text=st.text_input("Meme text","Is this a pigeon?")
|
103 |
+
meme=make_meme(im,text=meme_text,show_text=True,remove_background=no_bg)
|
104 |
+
st.image(meme)
|
105 |
+
|
106 |
+
|
107 |
+
elif screen == mosaic_menu:
|
108 |
st.markdown("Todo add explanation about data")
|
109 |
st.image("assets/training_data_lowres.png")
|
110 |
|
111 |
|
112 |
# footer stuff
|
113 |
+
st.sidebar.caption(f"[Model](https://huggingface.co/ceyda/butterfly_cropped_uniq1K_512) & [Dataset](https://huggingface.co/huggan/smithsonian_butterflies_subset) used")
|
114 |
+
# Link project repo( scripts etc )
|
115 |
+
|
116 |
+
# Credits
|
117 |
+
st.sidebar.caption(f"Made during the [huggan](https://github.com/huggingface/community-events) hackathon")
|
118 |
+
st.sidebar.caption(f"Contributors:")
|
119 |
+
st.sidebar.caption(f"[Ceyda Cinarel](https://huggingface.co/ceyda) & [Jonathan Whitaker](https://datasciencecastnet.home.blog/)")
|
120 |
+
|
121 |
+
## Feel free to add more & change stuff ^
|
assets/impact.ttf
ADDED
Binary file (47.6 kB). View file
|
|
assets/latent_walks/regular_walk.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbf4a07057e77a05e3aa2acc5c219425f46758f09535fee44a0e6e48363d5078
|
3 |
+
size 1736391
|
assets/latent_walks/walk_cute.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:babff5726bfd81353959587c84ea8dab4d485c1853850b0119abc7a23ed12e11
|
3 |
+
size 7637184
|
assets/latent_walks/walk_happyrock.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5219340b5fe3e509f02e83a0f0c972bd8f0ecd76df4019cedb0abe373b0fb5e8
|
3 |
+
size 6594393
|
assets/mosaic_bg.png
ADDED
assets/outputs/example_output.jpg
ADDED
assets/outputs/output2.jpg
ADDED
assets/pigeon_meme.jpg
ADDED
assets/pigeon_meme_orig.jpg
ADDED
demo.py
CHANGED
@@ -1,6 +1,67 @@
|
|
1 |
import torch
|
2 |
from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN
|
3 |
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
def get_train_data(dataset_name="huggan/smithsonian_butterflies_subset"):
|
6 |
dataset=load_dataset(dataset_name)
|
@@ -8,13 +69,13 @@ def get_train_data(dataset_name="huggan/smithsonian_butterflies_subset"):
|
|
8 |
return dataset["train"]
|
9 |
|
10 |
from transformers import BeitFeatureExtractor, BeitForImageClassification
|
11 |
-
|
12 |
-
|
13 |
def embed(images):
|
14 |
-
inputs =
|
15 |
-
outputs =
|
16 |
last_hidden=outputs.hidden_states[-1]
|
17 |
-
pooler=
|
18 |
final_emb=pooler(last_hidden).detach().numpy()
|
19 |
return final_emb
|
20 |
|
@@ -29,15 +90,15 @@ def get_dataset():
|
|
29 |
dataset.load_faiss_index('beit_embeddings', 'beit_index.faiss')
|
30 |
return dataset
|
31 |
|
32 |
-
def load_model(model_name='ceyda/butterfly_cropped_uniq1K_512'):
|
33 |
-
gan = LightweightGAN.from_pretrained(model_name)
|
34 |
gan.eval()
|
35 |
return gan
|
36 |
|
37 |
def generate(gan,batch_size=1):
|
38 |
with torch.no_grad():
|
39 |
-
ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp_(0., 1.)
|
40 |
-
ims = ims.permute(0,2,3,1).detach().cpu().numpy()
|
41 |
return ims
|
42 |
|
43 |
def interpolate():
|
|
|
1 |
import torch
|
2 |
from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN
|
3 |
from datasets import load_dataset
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import paddlehub as hub
|
7 |
+
import random
|
8 |
+
from PIL import ImageDraw,ImageFont
|
9 |
+
|
10 |
+
import streamlit as st
|
11 |
+
|
12 |
+
@st.experimental_singleton
|
13 |
+
def load_bg_model():
|
14 |
+
bg_model = hub.Module(name='U2NetP', directory='assets/models/')
|
15 |
+
return bg_model
|
16 |
+
|
17 |
+
|
18 |
+
bg_model = load_bg_model()
|
19 |
+
def remove_bg(img):
|
20 |
+
result = bg_model.Segmentation(
|
21 |
+
images=[np.array(img)[:,:,::-1]],
|
22 |
+
paths=None,
|
23 |
+
batch_size=1,
|
24 |
+
input_size=320,
|
25 |
+
output_dir=None,
|
26 |
+
visualization=False)
|
27 |
+
output = result[0]
|
28 |
+
mask=Image.fromarray(output['mask'])
|
29 |
+
front=Image.fromarray(output['front'][:,:,::-1]).convert("RGBA")
|
30 |
+
front.putalpha(mask)
|
31 |
+
return front
|
32 |
+
|
33 |
+
meme_template=Image.open("./assets/pigeon_meme.jpg").convert("RGBA")
|
34 |
+
def make_meme(pigeon,text="Is this a pigeon?",show_text=True,remove_background=True):
|
35 |
+
|
36 |
+
meme=meme_template.copy()
|
37 |
+
approx_butterfly_center=(850,30)
|
38 |
+
|
39 |
+
if remove_background:
|
40 |
+
pigeon=remove_bg(pigeon)
|
41 |
+
meme=meme.convert("RGBA")
|
42 |
+
|
43 |
+
random_rotate=random.randint(-30,30)
|
44 |
+
random_size=random.randint(150,200)
|
45 |
+
pigeon=pigeon.resize((random_size,random_size)).rotate(random_rotate,expand=True)
|
46 |
+
|
47 |
+
meme.alpha_composite(pigeon, approx_butterfly_center)
|
48 |
+
|
49 |
+
#ref: https://blog.lipsumarium.com/caption-memes-in-python/
|
50 |
+
def drawTextWithOutline(text, x, y):
|
51 |
+
draw.text((x-2, y-2), text,(0,0,0),font=font)
|
52 |
+
draw.text((x+2, y-2), text,(0,0,0),font=font)
|
53 |
+
draw.text((x+2, y+2), text,(0,0,0),font=font)
|
54 |
+
draw.text((x-2, y+2), text,(0,0,0),font=font)
|
55 |
+
draw.text((x, y), text, (255,255,255), font=font)
|
56 |
+
|
57 |
+
if show_text:
|
58 |
+
draw = ImageDraw.Draw(meme)
|
59 |
+
font_size=52
|
60 |
+
font = ImageFont.truetype("assets/impact.ttf", font_size)
|
61 |
+
w, h = draw.textsize(text, font) # measure the size the text will take
|
62 |
+
drawTextWithOutline(text, meme.width/2 - w/2, meme.height - font_size*2)
|
63 |
+
meme = meme.convert("RGB")
|
64 |
+
return meme
|
65 |
|
66 |
def get_train_data(dataset_name="huggan/smithsonian_butterflies_subset"):
|
67 |
dataset=load_dataset(dataset_name)
|
|
|
69 |
return dataset["train"]
|
70 |
|
71 |
from transformers import BeitFeatureExtractor, BeitForImageClassification
|
72 |
+
emb_feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224')
|
73 |
+
emb_model = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224')
|
74 |
def embed(images):
|
75 |
+
inputs = emb_feature_extractor(images=images, return_tensors="pt")
|
76 |
+
outputs = emb_model(**inputs,output_hidden_states= True)
|
77 |
last_hidden=outputs.hidden_states[-1]
|
78 |
+
pooler=emb_model.base_model.pooler
|
79 |
final_emb=pooler(last_hidden).detach().numpy()
|
80 |
return final_emb
|
81 |
|
|
|
90 |
dataset.load_faiss_index('beit_embeddings', 'beit_index.faiss')
|
91 |
return dataset
|
92 |
|
93 |
+
def load_model(model_name='ceyda/butterfly_cropped_uniq1K_512',model_version="95a9596a1e47e2419c9bd5252d809eecb14fdcf4"):
|
94 |
+
gan = LightweightGAN.from_pretrained(model_name,version=model_version)
|
95 |
gan.eval()
|
96 |
return gan
|
97 |
|
98 |
def generate(gan,batch_size=1):
|
99 |
with torch.no_grad():
|
100 |
+
ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp_(0., 1.)*255
|
101 |
+
ims = ims.permute(0,2,3,1).detach().cpu().numpy().astype(np.uint8)
|
102 |
return ims
|
103 |
|
104 |
def interpolate():
|
requirements.txt
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
git+https://github.com/huggingface/community-events.git@3fea10c5d5a50c69f509e34cd580fe9139905d04#egg=huggan
|
2 |
transformers
|
3 |
-
faiss-cpu
|
|
|
|
|
|
1 |
git+https://github.com/huggingface/community-events.git@3fea10c5d5a50c69f509e34cd580fe9139905d04#egg=huggan
|
2 |
transformers
|
3 |
+
faiss-cpu
|
4 |
+
paddlehub
|
5 |
+
paddlepaddle
|