MusicGenerator / app.py
hrishikesh
Update app.py
38b73a5
pip install -q https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.15/xformers-0.0.15.dev0+189828c.d20221207-cp38-cp38-linu
!wget https://raw.githubusercontent.com/hmartiro/riffusion-inference/main/riffusion/audio.py
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline
from audio import wav_bytes_from_spectrogram_image
model_id = "riffusion/riffusion-model-v1"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
#pipe.enable_xformers_memory_efficient_attention()
import random
COLORS = [
["#ff0000", "#00ff00"],
["#00ff00", "#0000ff"],
["#0000ff", "#ff0000"],
]
from diffusers import StableDiffusionPipeline
import torch
img_model_id = "runwayml/stable-diffusion-v1-5"
img_pipe = StableDiffusionPipeline.from_pretrained(img_model_id, torch_dtype=torch.float16, revision="fp16")
img_pipe = img_pipe.to("cuda")
#img_pipe.enable_xformers_memory_efficient_attention()
prompt = 'morning sunshine'
spectogram = pipe(prompt).images[0]
wav = wav_bytes_from_spectrogram_image(spectogram)
with open("output.wav", "wb") as f:
f.write(wav[0].getbuffer())
def audio_gen(prompt):
spectogram = pipe(prompt).images[0]
wav = wav_bytes_from_spectrogram_image(spectogram)
with open("output.wav", "wb") as f:
f.write(wav[0].getbuffer())
print("audio saved")
return ('output.wav',)
audio_gen("lazy nights")
gr.Interface(
audio_gen,
inputs=[gr.Textbox(label="prompt")],
outputs=[
gr.Audio(type='filepath')
],
title = 'Music Generator'
).launch(debug = True)