File size: 4,541 Bytes
3b455ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import faicons as fa
import plotly.express as px

# Load data and compute static values
from shared import app_dir, tips
from shinywidgets import render_plotly

from shiny import reactive, render
from shiny.express import input, ui

bill_rng = (min(tips.total_bill), max(tips.total_bill))

# Add page title and sidebar
ui.page_opts(title="Restaurant tipping", fillable=True)

with ui.sidebar(open="desktop"):
    ui.input_slider(
        "total_bill",
        "Bill amount",
        min=bill_rng[0],
        max=bill_rng[1],
        value=bill_rng,
        pre="$",
    )
    ui.input_checkbox_group(
        "time",
        "Food service",
        ["Lunch", "Dinner"],
        selected=["Lunch", "Dinner"],
        inline=True,
    )
    ui.input_action_button("reset", "Reset filter")

# Add main content
ICONS = {
    "user": fa.icon_svg("user", "regular"),
    "wallet": fa.icon_svg("wallet"),
    "currency-dollar": fa.icon_svg("dollar-sign"),
    "ellipsis": fa.icon_svg("ellipsis"),
}

with ui.layout_columns(fill=False):
    with ui.value_box(showcase=ICONS["user"]):
        "Total tippers"

        @render.express
        def total_tippers():
            tips_data().shape[0]

    with ui.value_box(showcase=ICONS["wallet"]):
        "Average tip"

        @render.express
        def average_tip():
            d = tips_data()
            if d.shape[0] > 0:
                perc = d.tip / d.total_bill
                f"{perc.mean():.1%}"

    with ui.value_box(showcase=ICONS["currency-dollar"]):
        "Average bill"

        @render.express
        def average_bill():
            d = tips_data()
            if d.shape[0] > 0:
                bill = d.total_bill.mean()
                f"${bill:.2f}"


with ui.layout_columns(col_widths=[6, 6, 12]):
    with ui.card(full_screen=True):
        ui.card_header("Tips data")

        @render.data_frame
        def table():
            return render.DataGrid(tips_data())

    with ui.card(full_screen=True):
        with ui.card_header(class_="d-flex justify-content-between align-items-center"):
            "Total bill vs tip"
            with ui.popover(title="Add a color variable", placement="top"):
                ICONS["ellipsis"]
                ui.input_radio_buttons(
                    "scatter_color",
                    None,
                    ["none", "sex", "smoker", "day", "time"],
                    inline=True,
                )

        @render_plotly
        def scatterplot():
            color = input.scatter_color()
            return px.scatter(
                tips_data(),
                x="total_bill",
                y="tip",
                color=None if color == "none" else color,
                trendline="lowess",
            )

    with ui.card(full_screen=True):
        with ui.card_header(class_="d-flex justify-content-between align-items-center"):
            "Tip percentages"
            with ui.popover(title="Add a color variable"):
                ICONS["ellipsis"]
                ui.input_radio_buttons(
                    "tip_perc_y",
                    "Split by:",
                    ["sex", "smoker", "day", "time"],
                    selected="day",
                    inline=True,
                )

        @render_plotly
        def tip_perc():
            from ridgeplot import ridgeplot

            dat = tips_data()
            dat["percent"] = dat.tip / dat.total_bill
            yvar = input.tip_perc_y()
            uvals = dat[yvar].unique()

            samples = [[dat.percent[dat[yvar] == val]] for val in uvals]

            plt = ridgeplot(
                samples=samples,
                labels=uvals,
                bandwidth=0.01,
                colorscale="viridis",
                colormode="row-index",
            )

            plt.update_layout(
                legend=dict(
                    orientation="h", yanchor="bottom", y=1.02, xanchor="center", x=0.5
                )
            )

            return plt


ui.include_css(app_dir / "styles.css")

# --------------------------------------------------------
# Reactive calculations and effects
# --------------------------------------------------------


@reactive.calc
def tips_data():
    bill = input.total_bill()
    idx1 = tips.total_bill.between(bill[0], bill[1])
    idx2 = tips.time.isin(input.time())
    return tips[idx1 & idx2]


@reactive.effect
@reactive.event(input.reset)
def _():
    ui.update_slider("total_bill", value=bill_rng)
    ui.update_checkbox_group("time", selected=["Lunch", "Dinner"])