Kolors-FaceID / basicsr /models /video_recurrent_gan_model.py
lixiang46
fix basicsr bug
a64b7d4
raw
history blame
7.14 kB
import torch
from collections import OrderedDict
from basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.utils import get_root_logger
from basicsr.utils.registry import MODEL_REGISTRY
from .video_recurrent_model import VideoRecurrentModel
@MODEL_REGISTRY.register()
class VideoRecurrentGANModel(VideoRecurrentModel):
def init_training_settings(self):
train_opt = self.opt['train']
self.ema_decay = train_opt.get('ema_decay', 0)
if self.ema_decay > 0:
logger = get_root_logger()
logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
# build network net_g with Exponential Moving Average (EMA)
# net_g_ema only used for testing on one GPU and saving.
# There is no need to wrap with DistributedDataParallel
self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_g', None)
if load_path is not None:
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
else:
self.model_ema(0) # copy net_g weight
self.net_g_ema.eval()
# define network net_d
self.net_d = build_network(self.opt['network_d'])
self.net_d = self.model_to_device(self.net_d)
self.print_network(self.net_d)
# load pretrained models
load_path = self.opt['path'].get('pretrain_network_d', None)
if load_path is not None:
param_key = self.opt['path'].get('param_key_d', 'params')
self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True), param_key)
self.net_g.train()
self.net_d.train()
# define losses
if train_opt.get('pixel_opt'):
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
else:
self.cri_pix = None
if train_opt.get('perceptual_opt'):
self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
else:
self.cri_perceptual = None
if train_opt.get('gan_opt'):
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)
self.net_d_iters = train_opt.get('net_d_iters', 1)
self.net_d_init_iters = train_opt.get('net_d_init_iters', 0)
# set up optimizers and schedulers
self.setup_optimizers()
self.setup_schedulers()
def setup_optimizers(self):
train_opt = self.opt['train']
if train_opt['fix_flow']:
normal_params = []
flow_params = []
for name, param in self.net_g.named_parameters():
if 'spynet' in name: # The fix_flow now only works for spynet.
flow_params.append(param)
else:
normal_params.append(param)
optim_params = [
{ # add flow params first
'params': flow_params,
'lr': train_opt['lr_flow']
},
{
'params': normal_params,
'lr': train_opt['optim_g']['lr']
},
]
else:
optim_params = self.net_g.parameters()
# optimizer g
optim_type = train_opt['optim_g'].pop('type')
self.optimizer_g = self.get_optimizer(optim_type, optim_params, **train_opt['optim_g'])
self.optimizers.append(self.optimizer_g)
# optimizer d
optim_type = train_opt['optim_d'].pop('type')
self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d'])
self.optimizers.append(self.optimizer_d)
def optimize_parameters(self, current_iter):
logger = get_root_logger()
# optimize net_g
for p in self.net_d.parameters():
p.requires_grad = False
if self.fix_flow_iter:
if current_iter == 1:
logger.info(f'Fix flow network and feature extractor for {self.fix_flow_iter} iters.')
for name, param in self.net_g.named_parameters():
if 'spynet' in name or 'edvr' in name:
param.requires_grad_(False)
elif current_iter == self.fix_flow_iter:
logger.warning('Train all the parameters.')
self.net_g.requires_grad_(True)
self.optimizer_g.zero_grad()
self.output = self.net_g(self.lq)
_, _, c, h, w = self.output.size()
l_g_total = 0
loss_dict = OrderedDict()
if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters):
# pixel loss
if self.cri_pix:
l_g_pix = self.cri_pix(self.output, self.gt)
l_g_total += l_g_pix
loss_dict['l_g_pix'] = l_g_pix
# perceptual loss
if self.cri_perceptual:
l_g_percep, l_g_style = self.cri_perceptual(self.output.view(-1, c, h, w), self.gt.view(-1, c, h, w))
if l_g_percep is not None:
l_g_total += l_g_percep
loss_dict['l_g_percep'] = l_g_percep
if l_g_style is not None:
l_g_total += l_g_style
loss_dict['l_g_style'] = l_g_style
# gan loss
fake_g_pred = self.net_d(self.output.view(-1, c, h, w))
l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
l_g_total += l_g_gan
loss_dict['l_g_gan'] = l_g_gan
l_g_total.backward()
self.optimizer_g.step()
# optimize net_d
for p in self.net_d.parameters():
p.requires_grad = True
self.optimizer_d.zero_grad()
# real
# reshape to (b*n, c, h, w)
real_d_pred = self.net_d(self.gt.view(-1, c, h, w))
l_d_real = self.cri_gan(real_d_pred, True, is_disc=True)
loss_dict['l_d_real'] = l_d_real
loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
l_d_real.backward()
# fake
# reshape to (b*n, c, h, w)
fake_d_pred = self.net_d(self.output.view(-1, c, h, w).detach())
l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True)
loss_dict['l_d_fake'] = l_d_fake
loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
l_d_fake.backward()
self.optimizer_d.step()
self.log_dict = self.reduce_loss_dict(loss_dict)
if self.ema_decay > 0:
self.model_ema(decay=self.ema_decay)
def save(self, epoch, current_iter):
if self.ema_decay > 0:
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
else:
self.save_network(self.net_g, 'net_g', current_iter)
self.save_network(self.net_d, 'net_d', current_iter)
self.save_training_state(epoch, current_iter)